Biomaterials PMID:26461114 (2016)

Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair

Zhu K1, Wu M2, Lai H1, Guo C1, Li J1, Wang Y1, Chen Y3, Wang C4, Shi J5


Transplantation of gene-transfected bone marrow-derived mesenchymal stem cells (BMMSCs) is a promising strategy for ischemic myocardium repair, but current therapeutic strategy suffers from high toxicity and inefficient gene transfection in primary BMMSCs. Here we designed and synthesized molecularly organic-inorganic hybrid hollow mesoporous organosilica nanoparticles (HMONs) based on nano-synthetic chemistry, which are featured with concurrent large pore size over 20 nm, small particulate size, hollow cavity and high dispersity for gene transfection in BMMSCs and subsequent in vivo cardiac repair. To efficiently create the therapeutic gene-transfected stem-cell lines, hepatocyte growth factor (HGF) gene was applied to transfect BMMSCs via biocompatible surface-engineered HMONs as a high-performance gene-delivery nanosystem. On the rat model of myocardial infarction, transplantation of HGF gene-transfected BMMSCs enables the largely decreased apoptotic cardiomyocytes, reduced infarct scar size, relieved interstitial fibrosis, and increased angiogenesis in myocardium. The resultant cardiac repair further promotes the significant improvement of heart function. Therefore, the fabricated organic-inorganic hybrid HMONs with large pore size represent a generalizable strategy and platform for gene transfection in BMMSCs and further regenerative medicine.

Copyright © 2015 Elsevier Ltd. All rights reserved.

下载 PDF 文件
  • 侧边栏广告 - 模式动物成功案例
  • 侧边栏广告 - 科研奖励基金计划
  • 侧边栏广告-积分兑换礼品