J Surg Res  183:427 (2013)

CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair.

Hu C, Yong X, Li C, Lü M, Liu D, Chen L, Hu J, Teng M, Zhang D, Fan Y, Liang G.


摘要:

METHODS:
BM-MSCs from green fluorescent protein transgenic male mice were transfused to irradiated recipient female C57BL/6 mice. Twenty-one days later, the female mice were inflicted with burn wounds. The size of the burned area was measured by an in vivo fluorescence imaging system, and BM-MSC chemotaxis and epithelialization were estimated by fluorescence in situ hybridization and immunofluorescence technology. The expression of CXCL12 and CXCR4 in the wound margin was detected by enzyme-linked immunosorbent assay and immunohistochemistry. The importance of CXCL12/CXCR4 signaling in BM-MSC chemotaxis was further estimated by blocking CXCR4 in vivo and in vitro.

RESULTS:
In vivo imaging results showed that BM-MSCs migrated to the injured margins. Fluorescence in situ hybridization and immunofluorescence technology revealed that Y chromosome-positive cells derived from green fluorescent protein transgenic mice were detected to be colocalized with keratin protein. Enzyme-linked immunosorbent assay revealed increased levels of CXCL12 and CXCR4 protein in the wound sites of BM-MSC-treated chimeric mice after burn. Immunohistochemistry also disclosed that CXCL12 levels were elevated at postburn day 7 compared with day 0. Furthermore, pretreatment of the BM-MSCs with the CXCR4 antagonist AMD3100 significantly inhibited the mobilization of BM-MSCs in vitro and in vivo, which attenuated wound closure.

CONCLUSION:
BM-MSC migration to the burned margins promotes the epithelialization of the wound, and mobilization of BM-MSCs is mediated by CXCL12/CXCR4 signaling.

下载 PDF 文件
  • 侧边栏广告 - 模式动物成功案例
  • 侧边栏广告 - 科研奖励基金计划
  • 侧边栏广告-积分兑换礼品