J Bone Miner Res  29:1575 (2014)

MiR-335-5p Promotes Chondrogenesis in Mouse Mesenchymal Stem Cells and Is Regulated Through Two Positive Feedback Loops.

Lin X1, Wu L, Zhang Z, Yang R, Guan Q, Hou X, Wu Q.


摘要:

Chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors and signal pathways, including transcription factors such as Sox9 and microRNAs. MiR-335-5p has been previously reported to regulate osteogenic and adipogenic differentiations of MSCs, but its role in chondrogenic differentiation of MSC remains unknown. In this study, we found that miR-335-5p and its host gene Mest are co-expressed and greatly upregulated during mouse MSCs (mMSCs) chondrogenesis. Overexpression of miR-335-5p in mMSCs increased expression of chondrogenic marker genes. Molecular mechanism explorations revealed that miR-335-5p targets Daam1 and ROCK1, a set of negative regulators of Sox9; Sox9 downregulates the expression of miR-29a and 29b, both negative regulators of Mest expression, thus forming a positive loop from miR-335-5p to Sox9 to Mest/miR-335-5p. In addition, miR-335-5p targets DKK1 during mMSC chondrogenic differentiation to increase β-catenin/TCF activity, which leads to increased level of Mest transcription. These data showed miR-335-5p positively regulates MSC chondrogenesis, and two positive feedback loopsare identified for the expression of miR-335-5p and its host gene Mest during the early phase of mMSC chondrogenic differentiation. © 2014 American Society for Bone and Mineral Research.

下载 PDF 文件
  • 侧边栏广告 - 模式动物成功案例
  • 侧边栏广告 - 科研奖励基金计划
  • 侧边栏广告-积分兑换礼品