J Biomater Appl 29:59 (2013)

A novel combination of nano-scaffolds with micro-scaffolds to mimic extracellularmatrices improve osteogenesis.

Xia Y1, Peng SS2, Xie LZ1, Lian XJ3, Zhang XJ4, Cui H4, Song TX4, Zhang FM5, Gu N6, Cui FZ7.


To improve bone engineering for clinical applications, we coupled nanofiber-peptide hydrogel to nano-hydroxyapatite/collagen to form a bioactive scaffold (cnHAC) that mimics extracellular matrices. In comparison to nano-hydroxyapatite/collagen, we found that cnHAC promoted cell adhesion and spreading, and DNA content measurements, alkaline phosphatase activity assays, and reverse transcriptase-polymerase chain reaction analyses of osteogenic gene expression showed that cnHAC significantly improved cellular attachment, proliferation, and osteogenic differentiation in vitro (P < 0.05). In vivo models based on rat calvarial implants showed that cnHAC significantly enhanced bone regeneration (P < 0.05). In conclusion, we demonstrated that novel cnHAC scaffolds could potentially facilitate future bone regenerative medicine.

下载 PDF 文件
  • 侧边栏广告 - 模式动物成功案例
  • 侧边栏广告 - 科研奖励基金计划
  • 侧边栏广告-积分兑换礼品