Cell Death Dis PMID:24457954 (2014)

Nox4 and redox signaling mediate TGF-b-induced endothelial cell apoptosis and phenotypic switch.

Yan F1, Wang Y1, Wu X1, Peshavariya HM2, Dusting GJ2, Zhang M1, Jiang F1.


Transforming growth factor-β (TGF-β) triggers apoptosis in endothelial cells, while the mechanisms underlying this action are not entirely understood. Using genetic and pharmacological tools, we demonstrated that TGF-β induced a moderate apoptotic response in human cultured endothelial cells, which was dependent upon upregulation of the Nox4 NADPH oxidase and production of reactive oxygen species (ROS). In contrast, we showed that ectopic expression of Nox4 via viral vectors (vNox4) produced an antiapoptotic effect. TGF-β caused ROS-dependent p38 activation, whereas inhibition of p38 blunted TGF-β-induced apoptosis. However, vNox4, but not TGF-β, activated Akt, and inhibition of Akt attenuated the antiapoptotic effect of vNox4. Akt activation induced by vNox4 was accompanied by inactivation of the protein tyrosine phosphatase-1B (PTP1B) function and enhanced vascular endothelial growth factor receptor (VEGFR)-2 phosphorylation. Moreover, we showed that TGF-β enhanced Notch signaling and increased expression of the arterial marker EphrinB2 in a redox-dependent manner. In summary, our results suggest that Nox4 and ROS have pivotal roles in mediating TGF-β-induced endothelial apoptosis and phenotype specification. Redox mechanisms may influence endothelial cell functions by modulating p38, PTP1B/VEGFR/Akt and Notch signaling pathways.

下载 PDF 文件
  • 侧边栏广告 - 模式动物成功案例
  • 侧边栏广告 - 科研奖励基金计划
  • 侧边栏广告-积分兑换礼品