Hum Mol Genet   21:4930 (2012)

Functional characterization of tissue-specific enhancers in the DLX56 locus

Birnbaum RY1, Everman DB, Murphy KK, Gurrieri F, Schwartz CE, Ahituv N.


Disruption of distaless homeobox 5 and 6 (Dlx5/6) in mice results in brain, craniofacial, genital, ear and limb defects. In humans, chromosomal aberrations in the DLX5/6 region, some of which do not encompass DLX5/6, are associated with split hand/foot malformation 1 (SHFM1) as well as intellectual disability, craniofacial anomalies and hearing loss, suggesting that the disruption of DLX5/6 regulatory elements could lead to these abnormalities. Here, we characterized enhancers in the DLX5/6 locus whose tissue-specific expression and genomic location along with previously characterized enhancers correlate with phenotypes observed in individuals with chromosomal abnormalities. By analyzing chromosomal aberrations at 7q21, we refined the minimal SHFM1 critical region and used comparative genomics to select 26 evolutionary conserved non-coding sequences in this critical region for zebrafish enhancer assays. Eight of these sequences were shown to function as brain, olfactory bulb, branchial arch, otic vesicle and fin enhancers, recapitulating dlx5a/6a expression. Using a mouse enhancer assay, several of these zebrafish enhancers showed comparable expression patterns in the branchial arch, otic vesicle, forebrain and/or limb at embryonic day 11.5. Examination of the coordinates of various chromosomal rearrangements in conjunction with the genomic location of these tissue-specific enhancers showed a correlation with the observed clinical abnormalities. Our findings suggest that chromosomal abnormalities that disrupt the function of these tissue-specific enhancerscould be the cause of SHFM1 and its associated phenotypes. In addition, they highlight specific enhancers in which mutations could lead to non-syndromic hearing loss, craniofacial defects or limb malformations.

  • 侧边栏广告 - 模式动物成功案例




用户 Email 是必须的

请输入有效的 Email.