Biomacromolecules 14:342 (2013)

Control over the gradient differentiation of rat BMSCs on a PCL membrane with surface-immobilized alendronate gradient.

Zhu Y1, Mao Z, Gao C.


Gradient biomaterials can offer progressively changing signals to specific tissue interface, and thereby modulate the conjunction between different tissues. A linear density gradient of alendronate (Aln), a molecule that is capable of promoting osteogenic differentiation of bone mesenchymal stem cells (BMSCs), was created on an aminolyzed poly(ε-caprolactone) (PCL) membrane. X-ray photoelectron spectroscopy and quartz crystal microbalance with dissipation revealed the linear increase of the Aln amount as a function of the position on the PCL membrane. By contrast, the surface wettability and energy were kept unchanged. The surface-grafted Aln showed a stronger ability to induce the osteogenic differentiation of rat BMSCs than its counterpart in culture medium of the same amount, and the osteo-inductive culture medium. On the Aln-grafted gradient surface, the BMSCs showed gradient osteogenic differentiation as a function of membrane position in terms of cell morphology, alkaline phosphatase activity, calcium deposition, and the expression of osteogenesis marker proteins including collagen type I (COL I), Runt-related transcription factor 2 (Runx2), and osteocalcin (OCN).

  • 侧边栏广告 - 科研奖励基金计划




用户 Email 是必须的

请输入有效的 Email.