Logo
Homepage
Explore Our Models
My Cart
Contact
Subscribe
Models
Genetically Engineered Animals
Knockout Mice
Knockout Rats
Knockin Mice
Knockin Rats
Transgenic Mice
Transgenic Rats
Model Generation Techniques
Turboknockout<sup>®</sup> Gene Targeting
ES Cell Gene Targeting
Targeted Gene Editing
Regular Transgenic
PiggyBac Transgenesis
BAC Transgenic
Research Models
HUGO-GT™ Humanized Mice
Cre Mouse Lines
Humanized Target Gene Models
Metabolic Disease Models
Ophthalmic Disease Models
Neurological Disease Models
Autoimmune Disease Models
Immunodeficient Mouse Models
Humanized Immune System Mouse Models
Oncology & Immuno-oncology Models
Covid-19 Mouse Models
MouseAtlas Model Library
Knockout Cell Line Product Catalog
Tumor Cell Line Product Catalog
AAV Standard Product Catalog
Animal Supporting Services
Breeding Services
Cryopreservation & Recovery
Phenotyping Services
BAC Modification
Custom Cell Line Models
Induced Pluripotent Stem Cells (iPSCs)
Knockout Cell Lines
Knockin Cell Lines
Point Mutation Cell Lines
Overexpression Cell Lines
Virus Packaging
Adeno-associated Virus (AAV) Packaging
Lentivirus Packaging
Adenovirus Packaging
CRO Services
By Therapeutic Area
Oncology
Ophthalmology
Neuroscience
Metabolic & Cardiovascular Diseases
Autoimmune & Inflammatory
By Drug Type
AI-Powered AAV Discovery
Gene Therapy
Oligonucleotide Therapy
Antibody Therapy
Cell Immunotherapy
Resources
Promotion
Events & Webinars
Newsroom
Blogs & Insights
Resource Vault
Reference Databases
Peer-Reviewed Citations
Rare Disease Data Center
AbSeek
Cell iGeneEditor™ System
OriCell
Quality
Facility Overview
Animal Health & Welfare
Health Reports
About Us
Corporate Overview
Our Partners
Careers
Contact Us
Login
Cardiovascular Research
Comprehensive Introduction of Apoe Knockout Mice
Cyagen Technical Content Team | June 02, 2025
Explore Ready-to-Use Mouse Models in MouseAtlas
Discover our extensive library of KO, cKO, and disease-specific mouse models. Accelerate your research with study-ready animals validated by scientists worldwide.
Explore Ready-to-Use Mouse Models in MouseAtlas
Contents
01. What Does the APOE Gene Do? 02. APOE Knockout Mouse Phenotype 03. APOE Knockout Mice Research Applications
Apoe knockout mice are widely used to study the function of APOE in atherosclerosis, lipid metabolism, and nerve damage. These mice also help to study interventional therapies that can change the atherosclerotic process. In this article, we review the phenotype of APOE knockout (KO) mice and explore its applications in cardiovascular and respiratory disease research. Read on for a comprehensive introduction of how APOE knockout mice are being used as genetically engineered mouse models of disease.
What Does the APOE Gene Do?

APOE encodes apolipoprotein E (ApoE), a protein associated with lipid particles, responsible for the transport of chylomicrons; Its specific liver and peripheral cell receptor binding are essential for the normal catabolism of triglyceride-rich lipoprotein components. ApoE is a component of very-low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) and is involved in cholesterol transport. Contrary to the human lipoprotein profile, mice have higher HDL and lower low-density lipoprotein (LDL) content, and their cholesterol is mainly present in HDL. Mutations in this gene can cause familial lipoproteinemia or type III hyperlipoproteinemia (HLP III). Atherosclerosis and Alzheimer's disease are also closely related to the polymorphism of the APOE gene.

APOE Knockout Mouse Phenotype

Homozygous Apoe knockout mice lack ApoE protein, and the mice develop normally but show a significant increase in total plasma cholesterol levels and spontaneous atherosclerotic lesions. Apoe knockout mouse models can be used to study the role of ApoE in lipid metabolism, atherosclerosis, and nerve damage and study interventional therapies that can change the atherosclerotic process.

Figure 1. In Apoe knockout mice, the lack of peripheral ApoE leads to an increase in lipoprotein particles [1]

After knocking out the Apoe gene, cholesterol is mainly distributed in very-low-density lipoprotein (VLDL) which carries a large amount of cholesterol that cannot be bound by lipoprotein receptors on the cell surface and degraded, thus, the accumulation of cholesterol leads to atherosclerosis. Studies have shown that ApoE-/- mice can spontaneously develop hypercholesterolemia (300-500 mg/dL) and develop significant atherosclerotic lesions under normal diet conditions. The high-fat/high-cholesterol diet that causes atherosclerosis will increase plasma cholesterol levels by more than 1000 mg/dL and accelerate the process of atherosclerosis. The triacylglycerol level in ApoE-/- mice plasma is 68% higher than that of normal mice, regardless of age and gender. Its high-density lipoprotein is only 45% of normal mice. The lesions of these mice mainly occurred in the aortic root, aortic arch, innominate artery, aortic branch, and renal artery bifurcation. Under normal diet conditions, early foam cell lesions can occur within ten weeks; after 15 weeks, they developed into atherosclerotic lesions, and after 20 weeks, they developed into advanced fibrosis. A high-fat/high-cholesterol diet can accelerate this disease process, including promoting the formation of cholesterol crystals, necrotic cores, and calcification.

APOE Knockout Mice Research Applications

1. Research on cardiovascular and respiratory diseases in the context of exposure to cigarette smoke and harm reduction

Atherosclerosis is a chronic disease in which systemic inflammation is the basis for plaque accumulation in the arterial intima. The systemic pro-inflammatory status of Apoe−/− mice also makes them become good candidates for the study of chronic obstructive pulmonary disease - which is characterized by lung inflammation, airway obstruction and emphysema – as well as cardiovascular diseases, which also share common risk factors, such as smoking.

Figure 2. Lipid imbalance, endothelial dysfunction, and systemic inflammation together determine the development of atherosclerosis and lung inflammation in Apoe-/- mice (and humans). [3]

2. Impacts on Cardiovascular Function Research

Combining the atherosclerosis mouse model and the technique of measuring hemodynamics in mice can be used to study the effects of hypercholesterolemia and/ or atherosclerosis on cardiovascular function. It can be used to study the interaction of nitric oxide, reactive oxygen species, aging and diet in a mouse model of impaired cardiovascular function.

3. Intervention Therapy and Treatments for Atherosclerotic Process

Nutritional intervention research: the use of different diets (different degrees of lack or increase in nutritional levels) can lead to changes in plaque morphology or cause plaque instability.

Pharmacological research: Known blood lipid-lowering drugs will affect the area of atherosclerosis in Apoe-/- mice. The interest in treating atherosclerosis as an inflammatory disease has also led to the use of Apoe-/- mouse models in targeted anti-inflammatory drug research.

Using Apoe knockout mice, we can study the mechanism of ApoE in lipid metabolism, nervous system, immune system, and more. Additionally, Apoe knockout mice can also crossbreed with many mouse models of disease to study the interplay of signal pathways between two model types. Therefore, Apoe gene-edited mice will continue to grow as an indispensable tool for researchers to explore disease pathology, discover the corresponding targets, and quickly evaluate potential treatments.

References:

1. Lane-Donovan C, Wong WM, Durakoglugil MS, Wasser CR, Jiang S, Xian X, Herz J. Genetic Restoration of Plasma ApoE Improves Cognition and Partially Restores Synaptic Defects in ApoE-Deficient Mice. J Neurosci. 2016 Sep 28;36(39):10141-50. doi: 10.1523/JNEUROSCI.1054-16.2016. Epub 2016 Sep 28. PMID: 27683909; PMCID: PMC5039258.

2. Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343-53. doi: 10.1016/0092-8674(92)90362-g. PMID: 1423598.

3. Lo Sasso G, Schlage WK, Boué S, Veljkovic E, Peitsch MC, Hoeng J. The Apoe(-/-) mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J Transl Med. 2016 May 20;14(1):146. doi: 10.1186/s12967-016-0901-1. PMID: 27207171; PMCID: PMC4875735.

4. Vasquez EC, Peotta VA, Gava AL, Pereira TM, Meyrelles SS. Cardiac and vascular phenotypes in the apolipoprotein E-deficient mouse. J Biomed Sci. 2012 Feb 13;19(1):22. doi: 10.1186/1423-0127-19-22. PMID: 22330242; PMCID: PMC3306747.

5. Zhang SH, Reddick RL, Burkey B and Maeda N. Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption. J Clin Invest 1994; 94: 937-945.

6. Jawień J, Nastałek P and Korbut R. Mouse models of experimental atherosclerosis. J Physiol Pharmacol 2004; 55: 503-517.

Subscribe to Receive Updates & Promotions From Cyagen
Subscribe
* Your privacy matters to us. We never share it with third parties.
Explore More
Unveiling the Secrets of the DIO-B6-M Mouse Model for Obesity Research
Spinocerebellar Ataxia Type III (SCA3) Research Model—B6-hATXN3 Mice
Vision Stolen by Years - Age-related Macular Degeneration
Y Maze Behavioral Task: Studying the function of spatial learning and memory in Neuroscience research
Share
Top
Ready to Elevate Your Research?
Discover how Cyagen can support your research. Let’s start a conversation.
Model Library
Model Library
Resources
Resources
Animal Quality
Animal Quality
Get Support
Get Support
Address:
2255 Martin Avenue, Suite E Santa Clara, CA 95050-2709, US
Tel:
800-921-8930 (8-6pm PST)
+1408-963-0306 (lnt’l)
Fax:
408-969-0338
Email:
animal-service@cyagen.com
service@cyagen.us
CRO Services
OncologyOphthalmologyNeuroscienceMetabolic & CardiovascularAutoimmune & InflammatoryGene TherapyAntibody Therapy
About Us
Corporate OverviewOur PartnersCareersContact Us
Social Media
Disclaimer: Pricing and availability of our products and services vary by region. Listed prices are applicable to the specific countries. Please contact us for more information.
Copyright © 2025 Cyagen. All rights reserved.
Privacy Policy
Site Map
Stay Updated with the Latest from Cyagen
Get the latest news on our research models, CRO services, scientific resources, and special offers—tailored to your research needs and delivered straight to your inbox.
Full Name
Email
Organization
Country
Areas of Interest