Logo
Homepage
Explore Our Models
Contact
Subscribe
Models
Genetically Engineered Animals
Knockout Mice
Knockout Rats
Knockin Mice
Knockin Rats
Transgenic Mice
Transgenic Rats
Model Generation Techniques
Turboknockout<sup>®</sup> Gene Targeting
ES Cell Gene Targeting
Targeted Gene Editing
Regular Transgenic
PiggyBac Transgenesis
BAC Transgenic
Research Models
HUGO-GT™ Humanized Mice
Cre Mouse Lines
Humanized Target Gene Models
Metabolic Disease Models
Ophthalmic Disease Models
Neurological Disease Models
Autoimmune Disease Models
Immunodeficient Mouse Models
Humanized Immune System Mouse Models
Oncology & Immuno-oncology Models
Covid-19 Mouse Models
MouseAtlas Model Library
Knockout Cell Line Product Catalog
Tumor Cell Line Product Catalog
AAV Standard Product Catalog
Animal Supporting Services
Breeding Services
Cryopreservation & Recovery
Phenotyping Services
BAC Modification
Custom Cell Line Models
Induced Pluripotent Stem Cells (iPSCs)
Knockout Cell Lines
Knockin Cell Lines
Point Mutation Cell Lines
Overexpression Cell Lines
Virus Packaging
Adeno-associated Virus (AAV) Packaging
Lentivirus Packaging
Adenovirus Packaging
CRO Services
By Therapeutic Area
Oncology
Ophthalmology
Neuroscience
Metabolic & Cardiovascular Diseases
Autoimmune & Inflammatory
By Drug Type
AI-Powered AAV Discovery
Gene Therapy
Oligonucleotide Therapy
Antibody Therapy
Cell Immunotherapy
Resources
Promotion
Events & Webinars
Newsroom
Blogs & Insights
Resource Vault
Reference Databases
Peer-Reviewed Citations
Rare Disease Data Center
AbSeek
Cell iGeneEditor™ System
OriCell
Quality
Facility Overview
Animal Health & Welfare
Health Reports
About Us
Corporate Overview
Our Partners
Careers
Contact Us
Genetic Disorders and Genomics
Controlling When and Where: Conditional and Inducible Gene Expression
Cyagen Technical Content Team | June 10, 2025
Explore Ready-to-Use Mouse Models in MouseAtlas
Discover our extensive library of KO, cKO, and disease-specific mouse models. Accelerate your research with study-ready animals validated by scientists worldwide.
Explore Ready-to-Use Mouse Models in MouseAtlas
Contents
01. Tissue-specific and inducible promoters 02. Recombinases 03. References
In the early days of engineered animal models, simple knockout and transgenic mice were used to examine gene function. Researchers began to dissect the roles of individual genes by studying phenotypes of mice lacking or overexpressing specific genes. However, constitutive knockouts and transgenics are not adequate for analyzing the function of many genes. For example, genes with important functions in adult animals may be embryonic lethal when knocked-out if they also have key functions in early development. Now, a variety of conditional and inducible animal model systems are available to spatially and temporally control gene expression.
Tissue-specific and inducible promoters

For many cell types and developmental stages, there are now well-described promoters or enhancers that allow targeted expression of transgenes at specific times and locations within an animal model. These promoters can be combined with inducible and conditional systems to tightly control genes of interest.

The most common and effective drug-inducible system in rodent models is based on tetracycline (tet) responsive promoter elements. There are both tet-ON and tet-OFF systems, so that drug administration to animals can be used to either activate or repress gene expression, respectively1. Drug-inducible promoter systems allow reversible activation/inactivation of genes of interest.

Recombinases

Recombination systems enable conditional and stable induction or suppression of gene expression in a particular developmental stage or specific cell type. The commonly used recombinase, Cre, recognizes specific sequences (loxP), and catalyzes recombination between two loxP sites. By crossing with mice expressing Cre under the control of tissue-specific or inducible promoters, Cre-mediated recombination will be restricted to specific tissues or time points.

Depending on the arrangement of loxP sites within the engineered allele, Cre expression can be used for a variety of effects. The most common usage is in Cre-mediated excision of loxP-flanked (i.e. “floxed”) portions of a gene, which can be used to conditionally knock-out a gene. Alternatively, Cre-controlled gene activation can be achieved with a removable transcriptional stop element (LoxP-Stop-LoxP). This type of conditionally activatable alleles of oncogenes have been used to generate numerous mouse models of tissue-specific cancers2-3.

Alternatively, other recombinase systems are also available for making conditional alleles in animal models. The Dre recombinase from the bacteriophage D6 is closely related to Cre, but recognizes a site called rox, distinct from loxP4. Flippase (FLP) is a recombinase that mediates DNA recombination between two recognition sites referred to as FRT (Flippase Recognition Target)5.

Cre expression can be coupled to drug-inducible promoters to further control when expression occurs, but another very successful strategy is based on a fusion between Cre and a mutant version of estrogen-receptor binding domain (called Cre-ER). In the uninduced state, Cre-ER remains in the cytoplasm, but when the ligand 4-hydroxytamoxifen is added, CreER enters the nucleus, leading to Cre-mediated recombination6-7.

Cyagen offers conditional knockout and knockin mouse model generation using our next generation, proprietary TurboKnockout® technology which can deliver highly complex cKO/KI models in just 6-9 months. If you need cKO/KI models in rat, our Targeted Gene Editing based models can assist.

All of our transgenic models can feature Cre/lox systems, Tet-on systems, and many other conditional and inducible approaches allowing you to better control gene expression. These include:

Mouse Models Rat Models
Plasmid/BAC based transgenics Plasmid/BAC based transgenics
PiggyBac transgenics PiggyBac transgenics
PiggyBac-on-BAC transgenics PiggyBac-on-BAC transgenics
References
  1. Senno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci. 2011;34:389-412.
  2. Jhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K. The microbial opsin family of optogenetic tools. Cell. 2011 Dec 23;147(7):1446-57.
  3. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, Mercer KL, Grochow R, Hock H, Crowley D, Hingorani SR, Zaks T, King C, Jacobetz MA, Wang L, Bronson RT, Orkin SH, DePinho RA, Jacks T. Endogenous oncogenic K-ras (G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004 Apr;5(4):375-87.
  4. Sauer B, McDermott J. DNA recombination with a heterospecific Cre homologidentified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. 2004 Nov 18;32(20):6086-95.
  5. Sadowski PD. The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53-91.
  6. Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6991-5.
  7. Schwenk F, Kuhn R, Angrand PO, Rajewsky K, Stewart AF. Temporally andspatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 1998 Mar15;26(6):1427-32.

One-stop solution for all your gene targeting mouse model:

TurboKnockout® Gene Targeting - ES-based knockout mice, 100% guaranteed germline transmission, as fast as 6 months

Targeted Gene Editing Knockout - Guaranteed germline transmitted F1 animals, as fast as 3 months

Transgenic Mice - More consistent expression, defined region of integration, founders as fast as 3 months

Subscribe to Receive Updates & Promotions From Cyagen
Subscribe
* Your privacy matters to us. We never share it with third parties.
Explore More
Unveiling the Secrets of the DIO-B6-M Mouse Model for Obesity Research
Spinocerebellar Ataxia Type III (SCA3) Research Model—B6-hATXN3 Mice
Vision Stolen by Years - Age-related Macular Degeneration
Y Maze Behavioral Task: Studying the function of spatial learning and memory in Neuroscience research
Share
Top
Ready to Elevate Your Research?
Discover how Cyagen can support your research. Let’s start a conversation.
Model Library
Model Library
Resources
Resources
Animal Quality
Animal Quality
Get Support
Get Support
Address:
2255 Martin Avenue, Suite E Santa Clara, CA 95050-2709, US
Tel:
800-921-8930 (8-6pm PST)
+1408-963-0306 (lnt’l)
Fax:
408-969-0338
Email:
animal-service@cyagen.com
service@cyagen.us
CRO Services
OncologyOphthalmologyNeuroscienceMetabolic & CardiovascularAutoimmune & InflammatoryGene TherapyAntibody Therapy
About Us
Corporate OverviewOur PartnersCareersContact Us
Social Media
Disclaimer: Pricing and availability of our products and services vary by region. Listed prices are applicable to the specific countries. Please contact us for more information.
Copyright © 2025 Cyagen. All rights reserved.
Privacy Policy
Site Map
Stay Updated with the Latest from Cyagen
Get the latest news on our research models, CRO services, scientific resources, and special offers—tailored to your research needs and delivered straight to your inbox.
Full Name
Email
Organization
Country
Areas of Interest