B6-hTFRC (CDS) Mouse
Request a Product Quote
Select products from our catalogs and submit your request. Our team will get back to you with detailed information.
B6-hTFRC (CDS) Mouse
Product Name
B6-hTFRC (CDS) Mouse
Product ID
C001584
Strain Name
C57BL/6NCya-Tfrctm1(hTFRC)/Cya
Backgroud
C57BL/6NCya
When using this mouse strain in a publication, please cite “B6-hTFRC (CDS) Mouse (Catalog C001584) were purchased from Cyagen.”
Other Target Humanized Mouse Models
Blood-Brain Barrier
Product Type
Age
Genotype
Sex
Quantity
Price:
Contact for Pricing
Other Target Humanized Mouse Models
Blood-Brain Barrier
Basic Information
Validation Data
Related Resource
Basic Information
Gene Name
Gene Alias
T9, TR, TFR, p90, CD71, TFR1, TRFR, IMD46
NCBI ID
Chromosome
Chr 3
MGI ID
Datasheet
Strain Description
The Transferrin receptor (TFRC) gene encodes Transferrin Receptor 1 (TFR1), a protein that is expressed at low levels in most normal cells but shows increased expression in highly proliferative cells, such as basal epidermal cells, intestinal epithelium, and certain activated immune cells. Brain capillary endothelial cells, which constitute the blood-brain barrier (BBB), also express this receptor at high levels [1]. TFR1 plays a critical role in maintaining iron metabolism and homeostasis by facilitating receptor-mediated endocytosis of iron-bound transferrin (Tf) via Tf cycling, thereby promoting iron uptake [2]. Cellular iron deficiency can lead to apoptosis, while cellular transformation requires substantial iron to sustain proliferation, with iron overload contributing to tumor progression. The high expression of TFR1 in many tumors makes it a potential tumor marker, offering a target for therapies to inhibit tumor growth and metastasis [1]. Moreover, TFR1 is implicated in anemia and iron metabolism disorders. Studies have shown that elevated TFR1 expression in cardiomyocytes is associated with exacerbated inflammation in myocarditis patients [3].
As a target for antibody-mediated cancer therapy, TFR1 can be leveraged through two approaches: one involves the use of antibodies conjugated to anti-cancer drugs, which are indirectly internalized via receptor-mediated endocytosis; the other employs antibodies that directly disrupt receptor function or induce Fc effector functions such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). Various clinical drugs targeting TFR1 are currently under development, including antisense oligonucleotides (ASOs), antibody-drug conjugates (ADCs), and antibody-oligonucleotide conjugates, applicable to diseases such as cancer, anemia, and neurodegenerative disorders. Research indicates that enhancing antibody transport across the blood-brain barrier via TFR1, by forming specific bispecific antibodies with anti-β-amyloid antibodies, can improve therapeutic outcomes in Alzheimer's patients [4-5]. As research progresses, TFR1 is expected to become an effective clinical target for multiple diseases and a synergistic target for drug delivery across the blood-brain barrier (BBB).
The B6-hTFRC (CDS) mouse model was generated by inserting the human TFRC gene sequence into the mouse Tfrc gene locus using gene-editing technology. To minimize interference from mouse gene sequences or proteins, part of the mouse Tfrc gene sequence was knocked out, resulting in a model expressing only the human TFR1 protein. This model is valuable for studying iron metabolism disorders, neurodegenerative diseases, and tumor development, supporting the development of TFR1-targeted therapeutics and preclinical pharmacological evaluations.
Reference
Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-cancer Agents. Front Immunol. 2021 Mar 17;12:607692.
Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep. 2015 Oct 20;13(3):533-545.
Kobak KA, Franczuk P, Schubert J, Dzięgała M, Kasztura M, Tkaczyszyn M, Drozd M, Kosiorek A, Kiczak L, Bania J, Ponikowski P, Jankowska EA. Primary Human Cardiomyocytes and Cardiofibroblasts Treated with Sera from Myocarditis Patients Exhibit an Increased Iron Demand and Complex Changes in the Gene Expression. Cells. 2021 Apr 6;10(4):818.
Bray, Natasha. "Transferrin'bispecific antibodies across the blood–brain barrier." Nature Reviews Drug Discovery 14.1 (2015): 14-15.
Pardridge, William M. "Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody." Expert opinion on drug delivery 12.2 (2015): 207-222.
Strain Strategy
TurboKnockout targeting technology was used to replace part of exon 2 of the mouse Tfrc gene with a human TFRC chimeric cDNA WPRE-BGH pA cassette. Gene-editing techniques were employed to knock out exons 10-13 of the mouse Tfrc gene.

Figure 1a. Diagram of the gene editing strategy for the generation of B6-hTFRC (CDS) mice.
*TFRC chimeric cDNA: Mouse cytoplasmic and helical-Human extracellular.

Figure 1b. Diagram of the gene editing strategy for the generation of B6-hTFRC (CDS) mice.
Application Area
Studies on iron metabolism disorders, neurodegenerative diseases, and tumor development;
Development, screening, and efficacy evaluation of TFRC-targeted therapies;
Research and evaluation of drug delivery across the blood-brain barrier (BBB).
Validation Data
Related Resource
Contact Us
Connect with our experts for your custom animal model needs. Please fill out the form below to start a conversation or request a quote.
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our Privacy Policy for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
