Logo
Homepage
Explore Our Models
My Cart
Contact
Subscribe
Models
HUGO Series 🌟
HUGO-GT™ (Rare Disease Research)
HUGO-Ab™ (Antibody Discovery)
MouseAtlas Model Library
Flash Sales
Research Models
Cre Mouse Lines
Humanized Target Gene Models
Metabolic Disease Models
Ophthalmic Disease Models
Neurological Disease Models
Autoimmune Disease Models
Immunodeficient Mouse Models
Humanized Immune System Mouse Models
Oncology & Immuno-oncology Models
Covid-19 Mouse Models
Cell Line Models
Knockout Cell Line Product Catalog
Tumor Cell Line Product Catalog
AAV Standard Product Catalog
Services
Preclinical Efficacy
Neuroscience
Alzheimer's Disease (AD)
Parkinson's Disease (PD)
Huntington's Disease (HD)
Ophthalmology
Oncology
Metabolic & Cardiovascular Diseases
Autoimmune & Inflammatory
Genetically Engineered Animals
Knockout Mice
Transgenic Mice
Knockin Mice
Knockout Rats
Knockin Rats
Transgenic Rats
Model Generation Techniques
Turboknockout<sup>®</sup> Gene Targeting
ES Cell Gene Targeting
Targeted Gene Editing
Regular Transgenic
PiggyBac Transgenesis
BAC Transgenic
Breeding & Supporting Services
Breeding Services
Cryopreservation & Recovery
Phenotyping Services
BAC Modification
Virus Packaging
Adeno-associated Virus (AAV) Packaging
Lentivirus Packaging
Adenovirus Packaging
Custom Cell Line Services
Induced Pluripotent Stem Cells (iPSCs)
Knockout Cell Lines
Knockin Cell Lines
Point Mutation Cell Lines
Overexpression Cell Lines
Modalities
Gene Therapy
AI-Powered AAV Discovery
Oligonucleotide Therapy
Cell Immunotherapy
Resources
Promotion
Events & Webinars
Newsroom
Blogs & Insights
Resource Vault
Reference Databases
Peer-Reviewed Citations
Rare Disease Data Center
AbSeek
Cell iGeneEditor™ System
OriCell
About Us
Corporate Overview
Facility Overview
Animal Health & Welfare
Health Reports
Our Partners
Careers
Contact Us
Login
HomeMouseAtlas
hVEGFA-TG Mouse
Request a Product Quote
Select products from our catalogs and submit your request. Our team will get back to you with detailed information.
Full Name
Email
Phone Number
Organization
Job Role
Country
Catalog Type
Product Name
Main Area of Research
How did you hear about us?
Additional Comments
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our Privacy Policy for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
hVEGFA-TG Mouse
Product Name
hVEGFA-TG Mouse
Product ID
C001395
Strain Name
C57BL/6JCya-Tg(bRho-VEGFA)/Cya
Backgroud
C57BL/6JCya
When using this mouse strain in a publication, please cite “hVEGFA-TG Mouse (Catalog C001395) were purchased from Cyagen.”
Other Target Humanized Mouse Models
Disease Animal Models
Product Type
Age
Genotype
Sex
Quantity
Price:
Contact for Pricing
Other Target Humanized Mouse Models
Disease Animal Models
Basic Information
Validation Data
Related Resource
Basic Information
Gene Name
VEGFA
Gene Alias
VPF, VEGF, MVCD1
NCBI ID
7422
Chromosome
Chr 6
MGI ID
MGI:103178
More
Rare Disease Data Center >>
Datasheet
Click here to download >>
Strain Description
The Vascular Endothelial Growth Factor (VEGF) family is a group of particular endothelial growth factors intimately associated with angiogenesis. These factors promote increased vascular permeability, extracellular matrix degeneration, vascular endothelial cell migration and proliferation, and are capable of stimulating angiogenesis and increasing the permeability of existing vessels. As such, they play a pivotal role in normal vascular development and wound healing. The VEGF family comprises VEGFA, VEGFB, VEGFC, VEGFD, VEGFE, and PLGF[1]. Of these, VEGFA is the most commonly targeted in research related to neovascular ophthalmic diseases due to its crucial role in the proliferation, migration, and formation of endothelial cell microvessels[2]. Overexpression of VEGFA in the eye can result in abnormal vascular growth and leakage, leading to various ophthalmic diseases such as Age-Related Macular Degeneration (AMD), Diabetic Retinopathy (DR), and corneal neovascularization[2-3].
The hVEGFA-TG mouse is a transgenic model generated by Cyagen. In this model, the expression of human VEGFA CDS is driven by the bovine rhodopsin promoter, allowing for specific overexpression of the human VEGFA gene in the retina without affecting the expression of the endogenous VEGFA gene. This model exhibits clear retinal and choroidal vascular lesions while maintaining complete eye structure and can naturally develop diseases. Anti-VEGF drugs such as Aflibercept[4] have been evaluated for efficacy in this mouse model, demonstrating that Aflibercept can target and suppress VEGF expression, thereby alleviating retinal vascular lesions. As such, this model is well-suited for drug evaluation and mechanism research related to neovascular ophthalmic diseases.
Reference
Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004 Dec;56(4):549-80.
Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019 Mar 7;176(6):1248-1264.
Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, Neves A, Passarinha LA, Tomaz CT. Vascular endothelial growth factors and placenta growth factor in retinal vasculopathies: Current research and future perspectives. Cytokine Growth Factor Rev. 2018 Feb;39:102-115.
Stewart MW, Grippon S, Kirkpatrick P. Aflibercept. Nat Rev Drug Discov. 2012 Mar 30;11(4):269-70.Hartong, D. T., Berson, E. L., & Dryja, T. P. (2006). Retinitis pigmentosa. The Lancet, 368(9549), 1795-1809.
Strain Strategy
Figure 1. Diagram of the gene editing strategy employed in the generation of hVEGFA-TG mice. Utilizing transgenic technology, the “Bovine rhodopsin promoter-Kozak-Human VEGFA CDS-Mouse Prm1 polyA” gene expression construct was successfully integrated into the mouse genome. This approach facilitated the specific overexpression of human VEGFA in the retina of hVEGFA-TG mice.
Application Area
Research on Age-Related Macular Degeneration (AMD);
Research on Diabetic Retinopathy (DR);
Research on corneal neovascular diseases.
Validation Data
Related Resource
Contact Us
Connect with our experts for your custom animal model needs. Please fill out the form below to start a conversation or request a quote.
Inquiry Details
Main Area of Research
Service(s) of Interest
Gene of Interest
Project Details
How did you hear about us?
Contact Information
Full Name
Email
Phone Number
Organization
Job Role
Country
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our  Privacy Policy  for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
Model Library
Model Library
Resources
Resources
Animal Quality
Animal Quality
Get Support
Get Support
Address:
2255 Martin Avenue, Suite E Santa Clara, CA 95050-2709, US
Tel:
800-921-8930 (8-6pm PST)
+1408-963-0306 (lnt’l)
Fax:
408-969-0336
Email:
inquiry@cyagen.com
Models
HUGO-Ab™ (Antibody Discovery)HUGO-GT™ (Rare Disease Research)MouseAtlas Model LibraryResearch Models
Services
NeuroscienceOphthalmologyOncologyMetabolic & Cardiovascular DiseasesAutoimmune & Inflammatory
About Us
Corporate OverviewFacility OverviewAnimal Health & WelfareHealth ReportsOur PartnersCareersContact Us
Social Media
Disclaimer: Pricing and availability of our products and services vary by region. Listed prices are applicable to the specific countries. Please contact us for more information.
Copyright © 2025 Cyagen. All rights reserved.
Privacy Policy
Site Map
Stay Updated with the Latest from Cyagen
Get the latest news on our research models, CRO services, scientific resources, and special offers—tailored to your research needs and delivered straight to your inbox.
Full Name
Email
Organization
Country
Areas of Interest
Main Area of Research