Logo
Homepage
Explore Our Models
My Cart
Contact
Subscribe
Models
HUGO Series 🌟
HUGO-GT™ (Rare Disease Research)
HUGO-Ab™ (Antibody Discovery)
MouseAtlas Model Library
Research Models
Cre Mouse Lines
Humanized Target Gene Models
Metabolic Disease Models
Ophthalmic Disease Models
Neurological Disease Models
Autoimmune Disease Models
Immunodeficient Mouse Models
Humanized Immune System Mouse Models
Oncology & Immuno-oncology Models
Covid-19 Mouse Models
Cell Line Models
Knockout Cell Line Product Catalog
Tumor Cell Line Product Catalog
AAV Standard Product Catalog
Services
Preclinical Efficacy
Neuroscience
Alzheimer's Disease (AD)
Parkinson's Disease (PD)
Huntington's Disease (HD)
Ophthalmology
Oncology
Metabolic & Cardiovascular Diseases
Autoimmune & Inflammatory
Genetically Engineered Animals
Knockout Mice
Transgenic Mice
Knockin Mice
Knockout Rats
Knockin Rats
Transgenic Rats
Model Generation Techniques
Turboknockout<sup>®</sup> Gene Targeting
ES Cell Gene Targeting
Targeted Gene Editing
Regular Transgenic
PiggyBac Transgenesis
BAC Transgenic
Breeding & Supporting Services
Breeding Services
Cryopreservation & Recovery
Phenotyping Services
BAC Modification
Virus Packaging
Adeno-associated Virus (AAV) Packaging
Lentivirus Packaging
Adenovirus Packaging
Custom Cell Line Services
Induced Pluripotent Stem Cells (iPSCs)
Knockout Cell Lines
Knockin Cell Lines
Point Mutation Cell Lines
Overexpression Cell Lines
Modalities
Gene Therapy
AI-Powered AAV Discovery
Oligonucleotide Therapy
Cell Immunotherapy
Resources
Promotion
Events & Webinars
Newsroom
Blogs & Insights
Resource Vault
Reference Databases
Peer-Reviewed Citations
Rare Disease Data Center
AbSeek
Cell iGeneEditor™ System
OriCell
About Us
Corporate Overview
Facility Overview
Animal Health & Welfare
Health Reports
Our Partners
Careers
Contact Us
Login
HomeMouseAtlas
B6-h4-1BB/hPDL1 Mouse
Request a Product Quote
Select products from our catalogs and submit your request. Our team will get back to you with detailed information.
Full Name
Email
Phone Number
Organization
Job Role
Country
Catalog Type
Product Name
Main Area of Research
How did you hear about us?
Additional Comments
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our Privacy Policy for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
B6-h4-1BB/hPDL1 Mouse
Product Name
B6-h4-1BB/hPDL1 Mouse
Product ID
C001686
Strain Name
C57BL/6N;6JCya-Tnfrsf9em1(hTNFRSF9)Cd274em1(hCD274)/Cya
Backgroud
C57BL/6N;6JCya
When using this mouse strain in a publication, please cite “B6-h4-1BB/hPDL1 Mouse (Catalog C001686) were purchased from Cyagen.”
Tumor Target Humanized Mouse Models
Immune Target Humanized Mouse Models
Product Type
Age
Genotype
Sex
Quantity
Price:
Contact for Pricing
Tumor Target Humanized Mouse Models
Immune Target Humanized Mouse Models
Basic Information
Related Resource
Basic Information
Gene Name
TNFRSF9 & CD274
Gene Alias
ILA, 4-1BB, CD137, CDw137, IMD109, B7-H, B7H1, PDL1, PD-L1, hPD-L1, PDCD1L1, PDCD1LG1
NCBI ID
3604 & 29126
Chromosome
Chr 1, Chr 9
MGI ID
MGI:1101059; MGI:1926446
More
Rare Disease Data Center >>
Datasheet
Click here to download >>
Strain Description
The TNFRSF9 gene, also known as 4-1BB/CD137, encodes a protein that belongs to the TNF receptor superfamily. This receptor aids in the clonal expansion, survival, and development of T cells. It can also induce the proliferation of peripheral monocytes, enhance TCR/CD3-triggered activation-induced T cell apoptosis, and regulate CD28 co-stimulation to promote Th1 cell responses. TRAF adaptor proteins can bind to it and transmit signals that activate NF-kappaB. Many immune cell types express TNFRSF9, including activated NK cells, NKT cells, B cells, eosinophils, basophils, mast cells, neutrophils, mature Tregs, activated monocytes, and dendritic cells. Additionally, TNFRSF9 may be expressed in non-immune cell types such as endothelial cells, neurons, astrocytes, and microglia. TNFRSF9 plays roles in innate and adaptive immunity, including cancer immunology and autoimmune diseases [1]. Due to its broad expression profile and immune response functions, 4-1BB is a potential target for cancer and immunotherapy. In recent years, research on second-generation 4-1BB agonists has been expanding, with various strategies being implemented to overcome the liver toxicity and efficacy limitations of the first generation [2-3].
Programmed cell death 1 ligand 1 (PD-L1), also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7H1), is an immune inhibitory receptor ligand. PD-L1 is a type I transmembrane protein with immunoglobulin V-like (IgV) and C-like (IgC) structural domains and is expressed by hematopoietic and non-hematopoietic cells, including T cells, B cells, and various types of tumor cells [4]. PD-L1 can bind to the PD-1 on the surface of CD8+ T cells, inhibiting the activity of CD8+ T cells. This interaction can prevent the immune system from damaging normal tissues, but it can also be used by tumor cells to escape immune surveillance. Monoclonal antibodies that competitively bind to PD-L1 can relieve the immune function inhibition mediated by the binding of PD-1 and PD-L1. This can reactivate CD8+ T cells, triggering the human body's anti-tumor immune response [5]. Therefore, development of antibody drugs targeting PD-1 and PD-L1 is a hot area in tumor immunotherapy [5-7].
B6-h4-1BB/hPDL1 mice are TNFRSF9 and CD274 double humanized mouse models obtained by mating TNFRSF9 humanized mouse models (Catalog No. C001604) with CD274 humanized mouse models (Catalog No. C001235). They express human TNFRSF9 and CD274 genomic sequences under the control of mouse promoters. This model is a valuable tool for studying cancer immunotherapy. In addition, this model also provides a powerful preclinical research platform for evaluating the efficacy and mechanism of therapeutic drugs targeting TNFRSF9 and CD274.
Reference
Eckstrum K, Bany BM. Tumor necrosis factor receptor subfamily 9 (Tnfrsf9) gene is expressed in distinct cell populations in mouse uterus and conceptus during implantation period of pregnancy. Cell Tissue Res. 2011 Jun;344(3):567-76.
Kim AMJ, Nemeth MR, Lim SO. 4-1BB: A promising target for cancer immunotherapy. Front Oncol. 2022 Sep 14;12:968360.
Claus C, Ferrara-Koller C, Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs. 2023 Jan-Dec;15(1):2167189.
Kornepati AVR, Vadlamudi RK, Curiel TJ. Programmed death ligand 1 signals in cancer cells. Nat Rev Cancer. 2022 Mar;22(3):174-189.
Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García-Granda MJ, Vera R, Kochan G. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther. 2018 Sep 28;3:26.
Huang CY, Wang Y, Luo GY, Han F, Li YQ, Zhou ZG, Xu GL. Relationship Between PD-L1 Expression and CD8+ T-cell Immune Responses in Hepatocellular Carcinoma. J Immunother. 2017 Nov/Dec;40(9):323-333.
Zhang C, Wu S, Xue X, Li M, Qin X, Li W, Han W, Zhang Y. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV. Cytotherapy. 2008;10(7):711-9.
Strain Strategy
Figure 1. Diagram of the gene editing strategy for the generation of B6-hPDL1-V(2) mice. The mouse Tnfrsf9 endogenous extracellular domain was replaced with the human TNFRSF9 extracellular domain.
Figure 2. Diagram of the gene editing strategy for the generation of B6-hPDL1-V(2) mice. The gene sequence encoding the extracellular domain (immunoglobulin V-like, IgV-like) of mouse PD-L1 protein was replaced with the corresponding human PD-L1 gene sequence, while the sequence encoding the signal peptide was retained.
Application Area
4-1BB/PD-L1-targeted drug screening, development, and evaluation;
Research on the pathological mechanisms and therapeutic approaches of cancer immunotherapy.
Related Resource
Contact Us
Connect with our experts for your custom animal model needs. Please fill out the form below to start a conversation or request a quote.
Inquiry Details
Main Area of Research
Service(s) of Interest
Gene of Interest
Project Details
How did you hear about us?
Contact Information
Full Name
Email
Phone Number
Organization
Job Role
Country
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our  Privacy Policy  for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
Model Library
Model Library
Resources
Resources
Animal Quality
Animal Quality
Get Support
Get Support
Address:
2255 Martin Avenue, Suite E Santa Clara, CA 95050-2709, US
Tel:
800-921-8930 (8-6pm PST)
+1408-963-0306 (lnt’l)
Fax:
408-969-0336
Email:
inquiry@cyagen.com
Models
HUGO-Ab™ (Antibody Discovery)HUGO-GT™ (Rare Disease Research)MouseAtlas Model LibraryResearch Models
Services
NeuroscienceOphthalmologyOncologyMetabolic & Cardiovascular DiseasesAutoimmune & Inflammatory
About Us
Corporate OverviewFacility OverviewAnimal Health & WelfareHealth ReportsOur PartnersCareersContact Us
Social Media
Disclaimer: Pricing and availability of our products and services vary by region. Listed prices are applicable to the specific countries. Please contact us for more information.
Copyright © 2025 Cyagen. All rights reserved.
Privacy Policy
Site Map
Stay Updated with the Latest from Cyagen
Get the latest news on our research models, CRO services, scientific resources, and special offers—tailored to your research needs and delivered straight to your inbox.
Full Name
Email
Organization
Country
Areas of Interest
Main Area of Research