B6-hIL23A/hIL12B/hTL1A Mouse
Request a Product Quote
Select products from our catalogs and submit your request. Our team will get back to you with detailed information.
B6-hIL23A/hIL12B/hTL1A Mouse
Product Name
B6-hIL23A/hIL12B/hTL1A Mouse
Product ID
C001796
Strain Name
C57BL/6Cya-Il23atm1(hIL23A)Il12bem1(hIL12B)Tnfsf15em1(hTNFSF15)/Cya
Backgroud
C57BL/6Cya
Status
When using this mouse strain in a publication, please cite “B6-hIL23A/hIL12B/hTL1A Mouse (Catalog C001796) were purchased from Cyagen.”
Immune Target Humanized Mouse Models
Cytokine Gene Humanized Mouse Models
Inflammatory Bowel Disease
Product Type
Age
Genotype
Sex
Quantity
Price:
Contact for Pricing
Immune Target Humanized Mouse Models
Cytokine Gene Humanized Mouse Models
Inflammatory Bowel Disease
Basic Information
Related Resource
Basic Information
Gene Alias
P19, SGRF, IL-23, IL-23A, IL23P19, CLMF, NKSF, CLMF2, IMD28, IMD29, NKSF2, IL-12B, TL1, TL1A, VEGI, TNLG1B, VEGI192A
Chromosome
Chr 12, Chr 5, Chr 9
MGI ID
Datasheet
Strain Description
The IL23A gene encodes the p19 subunit, a component of interleukin-23 (IL-23), which forms a heterodimer with the p40 subunit (encoded by IL12B) to generate the functional IL-23 cytokine [1]. Primarily expressed by activated dendritic cells, macrophages, and monocytes, IL-23 signals through the IL-23 receptor (IL-23R) complex, activating the JAK-STAT pathway to promote Th17 cell differentiation and maintain IL-17 production. This process drives inflammatory responses and mucosal immunity against extracellular pathogens [1-2]. . Genetic polymorphisms within IL23A are strongly associated with autoimmune and inflammatory diseases, including psoriasis, Crohn's disease, and inflammatory bowel disease, due to dysregulated Th17 activity and chronic inflammation [1-2]. Monoclonal antibodies targeting IL-23, such as risankizumab and guselkumab, selectively block the p19 subunit, demonstrating therapeutic efficacy in psoriasis and inflammatory bowel diseases by suppressing pathogenic IL-17/Th17 pathways [3]. Also, monoclonal antibodies targeting IL-12B, such as ustekinumab, are clinically utilized for the treatment of moderate to severe psoriasis and Crohn's disease [4]. While IL-23 plays a role in protective immunity, its overactivation contributes to tissue damage in autoimmune settings, highlighting its dual function in immune regulation and disease pathogenesis [1-5].
TNF-like ligand 1A (TL1A), also known as TNF superfamily member 15 (TNFSF15), is a member of the tumor necrosis factor (TNF) family encoded by the TNFSF15 gene in humans. TL1A acts as a ligand for death receptor 3 (DR3) and decoy receptor 3 (DcR3), providing a stimulatory signal for downstream pathways. It regulates the proliferation, activation, and apoptosis of effector cells, as well as cytokine and chemokine production. TL1A is expressed in various immune cells, including monocytes, macrophages, dendritic cells, and T cells, as well as in non-immune cells such as synovial fibroblasts and endothelial cells. It plays a crucial role in modulating immune responses by promoting the differentiation and survival of T cells, particularly Th17 cells involved in inflammatory processes [6]. TL1A enhances IL-2 responses in anti-CD3/CD28-stimulated T cells and synergizes with IL-12 and IL-18 to augment IFN-γ release in human T and NK cells, biasing T cell differentiation toward a Th1 phenotype [7]. Dysregulation of TL1A expression is implicated in autoimmune diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), systemic lupus erythematosus (SLE), and ankylosing spondylitis (AS) [6]. TL1A has emerged as a promising therapeutic target, with ongoing research focused on developing monoclonal antibodies and other biologics to neutralize TL1A and reduce inflammation in autoimmune disorders. Clinical trial results suggest that TL1A inhibition can be used in the treatment of various autoimmune diseases, particularly IBD [8-10].
B6-hIL23A/hIL12B/hTL1A mouse is a triple-gene humanized model for IL23A, IL12B, and TNFSF15, generated by crossing B6-hIL23A&hIL12B mice (Catalog No.: C001620) with B6-hTL1A (TNFSF15) mice (Catalog No.: C001603). This model serves as a valuable tool for researching immune-related diseases, applicable to studies on immune response regulation and autoimmune diseases. It provides a robust preclinical research platform for the screening, development, and safety evaluation of drugs targeting IL23A/IL12B/TL1A.
Reference
Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, Guggino G. Role of the IL-23/IL-17 Pathway in Rheumatic Diseases: An Overview. Front Immunol. 2021 Feb 22;12:637829.
Jairath V, Acosta Felquer ML, Cho RJ. IL-23 inhibition for chronic inflammatory disease. Lancet. 2024 Oct 26;404(10463):1679-1692. doi: 10.1016/S0140-6736(24)01750-1. Erratum in: Lancet. 2025 Dec 21;404(10471):2542.
Huang YW, Tsai TF. A drug safety evaluation of risankizumab for psoriasis. Expert Opin Drug Saf. 2020 Apr;19(4):395-402.
Benson JM, Peritt D, Scallon BJ, Heavner GA, Shealy DJ, Giles-Komar JM, Mascelli MA. Discovery and mechanism of ustekinumab: a human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. MAbs. 2011 Nov-Dec;3(6):535-45.
Sun C, Xia J. Treatment of psoriasis: janus kinases inhibitors and biologics for the interleukin-23/Th17 axis. Minerva Med. 2020 Jun;111(3):254-265.
Xu WD, Li R, Huang AF. Role of TL1A in Inflammatory Autoimmune Diseases: A Comprehensive Review. Front Immunol. 2022 Jul 14;13:891328.
Papadakis KA, Prehn JL, Landers C, Han Q, Luo X, Cha SC, Wei P, Targan SR. TL1A synergizes with IL-12 and IL-18 to enhance IFN-gamma production in human T cells and NK cells. J Immunol. 2004 Jun 1;172(11):7002-7.
Solitano V, Jairath V, Ungaro F, Peyrin-Biroulet L, Danese S. TL1A inhibition for inflammatory bowel disease treatment: From inflammation to fibrosis. Med. 2024 May 10;5(5):386-400.
Neurath MF. Strategies for targeting cytokines in inflammatory bowel disease. Nat Rev Immunol. 2024 Aug;24(8):559-576.
Solitano V, Jairath V, Ungaro F, Peyrin-Biroulet L, Danese S. TL1A inhibition for inflammatory bowel disease treatment: From inflammation to fibrosis. Med. 2024 May 10;5(5):386-400.
Strain Strategy

Figure 1. Gene editing strategy of B6-hIL23A mice. The mouse Il23a gene sequence encoding the protein was replaced in situ with the corresponding human IL23A sequence, while retaining the sequence encoding the mouse endogenous signal peptide.

Figure 2. Gene editing strategy of B6-hIL12B mice. The sequences from the ATG start codon to the TAG stop codon of the endogenous mouse Il12b gene were replaced with the sequences from the ATG start codon to the TAG stop codon of the human IL12B gene.

Figure 3. Gene editing strategy of B6-hTL1A(TNFSF15) mice. The mouse Tnfsf15 endogenous extracellular domain was replaced with the human TNFSF15 extracellular domain.
Application Area
Screening, development, and preclinical evaluation of drugs targeting IL23A/IL12B/TL1A;
Research on the pathological mechanisms and therapeutic approaches of immune-related diseases;
Research on immune response regulation.
Related Resource
Contact Us
Connect with our experts for your custom animal model needs. Please fill out the form below to start a conversation or request a quote.
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our Privacy Policy for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
