A129 (Ifnar1 KO) Mouse
Request a Product Quote
Select products from our catalogs and submit your request. Our team will get back to you with detailed information.
A129 (Ifnar1 KO) Mouse
Product Name
A129 (Ifnar1 KO) Mouse
Product ID
C001891
Strain Name
129S2/SvPasCya-Ifnar1em2/Cya
Backgroud
129S2/SvPasCya
Status
When using this mouse strain in a publication, please cite “A129 (Ifnar1 KO) Mouse (Catalog C001891) were purchased from Cyagen.”
Other Immunodeficient Mice
Product Type
Age
Genotype
Sex
Quantity
The standard delivery applies for a guaranteed minimum of three heterozygous carriers. Breeding services for homozygous carriers and/or specified sex are available.
Contact for Pricing
Other Immunodeficient Mice
Basic Information
Validation Data
Related Resource
Basic Information
Gene Name
Gene Alias
Ifar, Ifrc, Ifnar, Infar
NCBI ID
Chromosome
Chr 16
MGI ID
Datasheet
Strain Description
Interferons (IFNs) are potent cytokines that serve as a critical component of the body's first line of defense against viral infections, playing a key role in inflammation and immune control by directly inducing pathogen-inhibiting molecules that suppress viral replication [1]. Arthropod-borne viruses (arboviruses) like Dengue virus (DENV), Zika virus (ZIKV), and Yellow Fever virus (YFV) encode proteins that antagonize the IFN response, helping these viruses evade host immunity and maintain sufficient viral loads in the blood (viremia) to sustain the vector-host transmission. Arboviruses pose a significant public health threat, affecting around 3.9 billion people in tropical and subtropical regions. However, most preclinical studies suggest that arboviruses cannot inhibit IFN responses in mice, rendering immunocompetent mice resistant to infection, with low viral loads and limited circulation, thus limiting their use in infection research [2-3]. As a result, immunodeficient mouse models with defects in multiple IFN signaling pathways have become essential tools for studying arbovirus pathogenesis and vaccine development [2-4].
Studies have demonstrated that wild-type mice of strains like C57BL/6, CD-1, or 129 rarely exhibit clinical symptoms after infection with arboviruses such as ZIKV. However, the virus has been detected in the blood, ovaries, and spleen of ZIKV-infected 129 mice, suggesting that this strain may be more susceptible to arboviruses [5-6]. Because the virus can persist in the bloodstream without causing disease or death, the 129 strain can be used to evaluate the teratogenic effects of such viruses. Furthermore, the 129 strain is commonly used in interferon signaling-deficient models related to other viral infections [7-8]. The IFNAR1 gene encodes a protein that is an essential component of the type I interferon (IFN) receptor, playing a critical role in the antiviral and immune responses. IFNAR1 is primarily expressed in immune cells, such as lymphocytes and dendritic cells, and various tissues, including the liver, brain, and skin. Defects in IFNAR1, whether due to mutations or regulatory abnormalities, can lead to severe diseases such as systemic lupus erythematosus, where excessive immune activation results in tissue damage, and certain cancers. Other diseases associated with IFNAR1 include hepatitis C, yellow fever, measles, papilloma, and viral infections.
The A129 (Ifnar1 KO) mice on a 129 background are a type I (α/β) interferon receptor (Ifnar1) gene knockout model. The absence of the IFNAR1 protein in these mice leads to a lack of type I IFN receptor function, thereby reducing immune response and increasing susceptibility to viral infections. Homozygous A129 (Ifnar1 KO) mice are viable and fertile, but they show increased susceptibility to arbovirus infections.
Reference
Müller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M. Functional role of type I and type II interferons in antiviral defense. Science. 1994 Jun 24;264(5167):1918-21.
van den Broek MF, Müller U, Huang S, Zinkernagel RM, Aguet M. Immune defence in mice lacking type I and/or type II interferon receptors. Immunol Rev. 1995 Dec;148:5-18.
Marín-Lopez A, Calvo-Pinilla E, Moreno S, Utrilla-Trigo S, Nogales A, Brun A, Fikrig E, Ortego J. Modeling Arboviral Infection in Mice Lacking the Interferon Alpha/Beta Receptor. Viruses. 2019 Jan 8;11(1):35.
Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, Schwarz MC, Sánchez-Seco MP, Evans MJ, Best SM, García-Sastre A. Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host Microbe. 2016 Jun 8;19(6):882-90.
Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe. 2016 May 11;19(5):720-30.
Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, Auguste AJ, Langsjoen RM, Paessler S, Vasilakis N, Weaver SC. Characterization of a Novel Murine Model to Study Zika Virus. Am J Trop Med Hyg. 2016 Jun 1;94(6):1362-1369.
Meyts I, Casanova JL. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur J Immunol. 2021 May;51(5):1039-1061.
Zivcec M, Spiropoulou CF, Spengler JR. The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 2: Vaccine efficacy studies. Antiviral Res. 2020 Feb;174:104702.
Strain Strategy
The Ifnar1 gene on mouse chromosome 16 was knocked out by deleting exons 2-8 using gene-editing technology.

Figure 1. Gene editing strategy for A129 (Ifnar1 KO) mice.
Application Area
Investigating the pathogenesis and developing vaccines for arboviruses such as DENV, ZIKV, YFV, and CHIKV;
Studying antiviral immune responses, interferon stimulation, and JAK-STAT signaling.
Validation Data
Related Resource
Contact Us
Connect with our experts for your custom animal model needs. Please fill out the form below to start a conversation or request a quote.
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our Privacy Policy for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
