B6-huTFRC/htau Mouse
Request a Product Quote
Select products from our catalogs and submit your request. Our team will get back to you with detailed information.
B6-huTFRC/htau Mouse
Product Name
B6-huTFRC/htau Mouse
Product ID
C001923
Strain Name
C57BL/6Cya-Tfrctm2(hTFRC)Mapttm1(hMAPT)/Cya
Backgroud
C57BL/6Cya
Status
When using this mouse strain in a publication, please cite “B6-huTFRC/htau Mouse (Catalog C001923) were purchased from Cyagen.”
Product Type
Age
Genotype
Sex
Quantity
The standard delivery applies for a guaranteed minimum of three heterozygous carriers. Breeding services for homozygous carriers and/or specified sex are available.
Contact for Pricing
Basic Information
Related Resource
Basic Information
Gene Alias
TAU, MSTD, PPND, DDPAC, MAPTL, MTBT1, MTBT2, tau-40, FTDP-17, PPP1R103, Tau-PHF6, T9, TR, TFR, p90, CD71, TFR1, TRFR, IMD46
Chromosome
Chr 17, Chr 3
Datasheet
Strain Description
The Transferrin receptor (TFRC) gene encodes Transferrin Receptor 1 (TFR1), a protein that is expressed at low levels in most normal cells but shows increased expression in highly proliferative cells, such as basal epidermal cells, intestinal epithelium, and certain activated immune cells. Brain capillary endothelial cells, which constitute the blood-brain barrier (BBB), also express this receptor at high levels [1]. TFR1 plays a critical role in maintaining iron metabolism and homeostasis by facilitating receptor-mediated endocytosis of iron-bound transferrin (Tf) via Tf cycling, thereby promoting iron uptake [2]. Cellular iron deficiency can lead to apoptosis, while cellular transformation requires substantial iron to sustain proliferation, with iron overload contributing to tumor progression. The high expression of TFR1 in many tumors makes it a potential tumor marker, offering a target for therapies to inhibit tumor growth and metastasis [1]. Moreover, TFR1 is implicated in anemia and iron metabolism disorders. Studies have shown that elevated TFR1 expression in cardiomyocytes is associated with exacerbated inflammation in myocarditis patients [3]. As a target for antibody-mediated cancer therapy, TFR1 can be leveraged through two approaches: one involves the use of antibodies conjugated to anti-cancer drugs, which are indirectly internalized via receptor-mediated endocytosis; the other employs antibodies that directly disrupt receptor function or induce Fc effector functions such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). Various clinical drugs targeting TFR1 are currently under development, including antisense oligonucleotides (ASOs), antibody-drug conjugates (ADCs), and antibody-oligonucleotide conjugates, applicable to diseases such as cancer, anemia, and neurodegenerative disorders. Research indicates that enhancing antibody transport across the blood-brain barrier via TFR1, by forming specific bispecific antibodies with anti-β-amyloid antibodies, can improve therapeutic outcomes in Alzheimer's patients [4-5]. As research progresses, TFR1 is expected to become an effective clinical target for multiple diseases and a synergistic target for drug delivery across the blood-brain barrier (BBB).
The tau protein, a microtubule-associated protein encoded by MAPT, is primarily localized to neuronal axons and plays a critical role in microtubule stability and assembly. By binding to microtubules, the tau protein helps to maintain neuronal cell shape. Mutations in MAPT can promote tau aggregation, leading to pathological tau protein accumulation and death of glutamatergic cortical neurons [6]. Additionally, certain MAPT mutations can affect pre-mRNA exon splicing, altering the ratio of 3R to 4R tau protein isoforms and increasing the relative production of 4R-tau protein, which is more prone to fibril formation [7-8].
The B6-huTFRC/htau mouse is a dual-gene humanized model obtained by mating B6-huTFRC mice (catalog number: C001860) with B6-htau mice (catalog number: C001410). This model can be used for research on neurodegenerative diseases and iron metabolism diseases, as well as pre-clinical studies of TFRC/MAPT-targeted therapeutic drugs.
Reference
Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-cancer Agents. Front Immunol. 2021 Mar 17;12:607692.
Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep. 2015 Oct 20;13(3):533-545.
Kobak KA, Franczuk P, Schubert J, Dzięgała M, Kasztura M, Tkaczyszyn M, Drozd M, Kosiorek A, Kiczak L, Bania J, Ponikowski P, Jankowska EA. Primary Human Cardiomyocytes and Cardiofibroblasts Treated with Sera from Myocarditis Patients Exhibit an Increased Iron Demand and Complex Changes in the Gene Expression. Cells. 2021 Apr 6;10(4):818.
Bray, Natasha. "Transferrin'bispecific antibodies across the blood–brain barrier." Nature Reviews Drug Discovery 14.1 (2015): 14-15.
Pardridge, William M. "Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody." Expert opinion on drug delivery 12.2 (2015): 207-222.
Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019 Jul;99(7):912-928.
Lisowiec J, Magner D, Kierzek E, Lenartowicz E, Kierzek R. Structural determinants for alternative splicing regulation of the MAPT pre-mRNA. RNA Biol. 2015;12(3):330-42.
Molecular Genetics Department, University of Antwerp. AD Mutations.
Strain Strategy

Figure 1. Gene editing strategy of B6-huTFRC mice. The mouse Tfrc endogenous extracellular domain was replaced with the human TFRC extracellular domain. The murine cytoplasmic and helical regions were kept.

Figure 2. Gene editing strategy for B6-htau mice. The sequences from the ATG start codon to downstream of the endogenous mouse Mapt gene were replaced with the sequences from the ATG start codon to downstream of the human MAPT gene. The humanized regions include 3'UTR.
Application Area
Neurodegenerative diseases such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD);
Research on iron metabolism disorders and tumor development;
Preclinical studies of TFRC/MAPT-targeted therapeutic agents.
Related Resource
Contact Us
Connect with our experts for your custom animal model needs. Please fill out the form below to start a conversation or request a quote.
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our Privacy Policy for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
