Logo
Homepage
Explore Our Models
My Cart
Contact
Subscribe
Models
HUGO Series 🌟
HUGO-GT™ (Rare Disease Research)
HUGO-Ab™ (Antibody Discovery)
MouseAtlas Model Library
Research Models
Cre Mouse Lines
Humanized Target Gene Models
Metabolic Disease Models
Ophthalmic Disease Models
Neurological Disease Models
Autoimmune Disease Models
Immunodeficient Mouse Models
Humanized Immune System Mouse Models
Oncology & Immuno-oncology Models
Covid-19 Mouse Models
Cell Line Models
Knockout Cell Line Product Catalog
Tumor Cell Line Product Catalog
AAV Standard Product Catalog
Services
Preclinical Efficacy
Neuroscience
Alzheimer's Disease (AD)
Parkinson's Disease (PD)
Huntington's Disease (HD)
Ophthalmology
Oncology
Metabolic & Cardiovascular Diseases
Autoimmune & Inflammatory
Genetically Engineered Animals
Knockout Mice
Transgenic Mice
Knockin Mice
Knockout Rats
Knockin Rats
Transgenic Rats
Model Generation Techniques
Turboknockout<sup>®</sup> Gene Targeting
ES Cell Gene Targeting
Targeted Gene Editing
Regular Transgenic
PiggyBac Transgenesis
BAC Transgenic
Breeding & Supporting Services
Breeding Services
Cryopreservation & Recovery
Phenotyping Services
BAC Modification
Virus Packaging
Adeno-associated Virus (AAV) Packaging
Lentivirus Packaging
Adenovirus Packaging
Custom Cell Line Services
Induced Pluripotent Stem Cells (iPSCs)
Knockout Cell Lines
Knockin Cell Lines
Point Mutation Cell Lines
Overexpression Cell Lines
Modalities
Gene Therapy
AI-Powered AAV Discovery
Oligonucleotide Therapy
Cell Immunotherapy
Resources
Promotion
Events & Webinars
Newsroom
Blogs & Insights
Resource Vault
Reference Databases
Peer-Reviewed Citations
Rare Disease Data Center
AbSeek
Cell iGeneEditor™ System
OriCell
About Us
Corporate Overview
Facility Overview
Animal Health & Welfare
Health Reports
Our Partners
Careers
Contact Us
Login
HomeMouseAtlas
BALB/c-hDPP4 (line 2) Mouse
Request a Product Quote
Select products from our catalogs and submit your request. Our team will get back to you with detailed information.
Full Name
Email
Phone Number
Organization
Job Role
Country
Catalog Type
Product Name
Main Area of Research
How did you hear about us?
Additional Comments
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our Privacy Policy for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
BALB/c-hDPP4 (line 2) Mouse
Product Name
BALB/c-hDPP4 (line 2) Mouse
Product ID
I001189
Strain Name
BALB/cAnCya-Dpp4em3(hDPP4)/Cya
Backgroud
BALB/cAnCya
When using this mouse strain in a publication, please cite “BALB/c-hDPP4 (line 2) Mouse (Catalog I001189) were purchased from Cyagen.”
Metabolic Target Humanized Mouse Models
Other Target Humanized Mouse Models
Product Type
Age
Genotype
Sex
Quantity
Price:
Contact for Pricing
Metabolic Target Humanized Mouse Models
Other Target Humanized Mouse Models
Basic Information
Related Resource
Basic Information
Gene Name
DPP4
Gene Alias
CD26, ADABP, ADCP2, DPPIV, TP103
NCBI ID
1803
Chromosome
Chr 2
MGI ID
MGI:94919
More
Rare Disease Data Center >>
Datasheet
Click here to download >>
Strain Description
The DPP4 gene (CD26) encodes dipeptidyl peptidase 4, an intrinsic type II transmembrane glycoprotein and a serine exopeptidase involved in glucose and insulin metabolism and immune regulation. The DPP4 protein is a functional receptor for the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The spike protein of MERS-CoV binds to DPP4, mediating the virus's attachment to host cells and promoting virus-cell fusion, thereby initiating infection [1-2]. Studies have found that the DPP4 protein may interact with the S1 domain of the spike glycoprotein of COVID-19, aiding in enhancing the transmission efficiency of viral particles [3]. Experimental evidence has shown that hDPP4 transgenic mice infected with MERS-CoV experience high mortality and severe pneumonia [4]. These mice infected with Manis javanica HKU4-related coronavirus (MjHKU4r-CoV-1) develop mild to moderate pulmonary histological damage [5]. Thus, gene-edited mice expressing human DPP4 protein are important tools for studying coronavirus infections. Additionally, DPP4 expression is severely dysregulated in diseases such as inflammation, cancer, obesity, and diabetes. DPP4 is highly expressed in the intestine, where it selectively cleaves N-terminal dipeptides from various substrates, including incretins, to inactivate multiple bioactive peptides. Since incretins like glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are crucial for regulating postprandial insulin secretion, inhibiting DPP4 to elevate endogenous GLP-1 and GIP levels to increase insulin levels has become an important treatment method for type 2 diabetes (T2D) [6].
The BALB/c-hDPP4(line 2) mouse is a humanized model constructed by gene editing technology to replace a partial region of the mouse Dpp4 gene with the human DPP4 gene CDS sequence. This model can be used to study the infection mechanisms of viruses such as MERS-CoV and COVID-19, as well as to develop related virus vaccines. Additionally, this model can be utilized to develop DPP4 inhibitor therapies. Similar models include the B6-hDPP4(line 1) mouse (Catalog ID: I001187), constructed on the C57BL/6NCya background strain, which replaces the sequence of the mouse Dpp4 gene with the human DPP4 gene CDS sequence, and the B6-hDPP4(line 2) mouse (Catalog ID: I001188), constructed on the C57BL/6JCya background strain. These models meet the experimental needs of different strain backgrounds.
Reference
Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, Haagmans BL. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013 Mar 14;495(7440):251-4.
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang B, Shi Y, Yan J, Gao GF. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013 Aug 8;500(7461):227-31.
Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020 Mar 17;9(1):601-604.
Agrawal AS, Garron T, Tao X, Peng BH, Wakamiya M, Chan TS, Couch RB, Tseng CT. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol. 2015 Apr;89(7):3659-70.
Chen J, Yang X, Si H, Gong Q, Que T, Li J, Li Y, Wu C, Zhang W, Chen Y, Luo Y, Zhu Y, Li B, Luo D, Hu B, Lin H, Jiang R, Jiang T, Li Q, Liu M, Xie S, Su J, Zheng X, Li A, Yao Y, Yang Y, Chen P, Wu A, He M, Lin X, Tong Y, Hu Y, Shi ZL, Zhou P. A bat MERS-like coronavirus circulates in pangolins and utilizes human DPP4 and host proteases for cell entry. Cell. 2023 Feb 16;186(4):850-863.e16.
Röhrborn D, Wronkowitz N, Eckel J. DPP4 in Diabetes. Front Immunol. 2015 Jul 27;6:386.
Strain Strategy
From p.S29 to partial intron 2 was replaced with the Human DPP4 CDS-rBG pA cassette. The murine topological domain and transmembrane were remained.
Figure 1. Gene editing strategy of BALB/c-hDPP4(line 2) mice.
Application Area
Development of DPP4 inhibitor therapies;
Research on Middle East Respiratory Syndrome (MERS-CoV) infection;
Research on Severe Acute Respiratory Syndrome (SARS-CoV) infection.
Related Resource
Contact Us
Connect with our experts for your custom animal model needs. Please fill out the form below to start a conversation or request a quote.
Inquiry Details
Main Area of Research
Service(s) of Interest
Gene of Interest
Project Details
How did you hear about us?
Contact Information
Full Name
Email
Phone Number
Organization
Job Role
Country
Cyagen values your privacy. We’d like to keep you informed about our latest offerings and insights. Your preferences:
You may unsubscribe from these communications at any time. See our  Privacy Policy  for details on opting out and data protection.
By clicking the button below, you consent to allow Cyagen to store and process the personal information submitted in this form to provide you the content requested.
Model Library
Model Library
Resources
Resources
Animal Quality
Animal Quality
Get Support
Get Support
Address:
2255 Martin Avenue, Suite E Santa Clara, CA 95050-2709, US
Tel:
800-921-8930 (8-6pm PST)
+1408-963-0306 (lnt’l)
Fax:
408-969-0336
Email:
inquiry@cyagen.com
Models
HUGO-Ab™ (Antibody Discovery)HUGO-GT™ (Rare Disease Research)MouseAtlas Model LibraryResearch Models
Services
NeuroscienceOphthalmologyOncologyMetabolic & Cardiovascular DiseasesAutoimmune & Inflammatory
About Us
Corporate OverviewFacility OverviewAnimal Health & WelfareHealth ReportsOur PartnersCareersContact Us
Social Media
Disclaimer: Pricing and availability of our products and services vary by region. Listed prices are applicable to the specific countries. Please contact us for more information.
Copyright © 2025 Cyagen. All rights reserved.
Privacy Policy
Site Map
Stay Updated with the Latest from Cyagen
Get the latest news on our research models, CRO services, scientific resources, and special offers—tailored to your research needs and delivered straight to your inbox.
Full Name
Email
Organization
Country
Areas of Interest
Main Area of Research