日期: 2018年02月27日
导读:科学家们发现,周期性的长时间禁食不仅对免疫系统损伤(化疗的主要副作用)有保护作用,而且还能诱导免疫系统再生,令休眠的干细胞开始更新。这是人们首次发现,天然干涉手段能够激活干细胞,促进器官或系统的再生。赛业小编为您推荐“Cell Stem Cell 2月受关注文章盘点”,详情如下:
《Cell Stem Cell》杂志是2007年Cell出版社新增两名新成员之一(另外一个杂志是Cell Host & Microbe),这一杂志内容涵盖了从最基本的细胞和发育机制到医疗软件临床应用等整个干细胞生物学研究内容。这一杂志特别关注胚胎干细胞、组织特异性和癌症干细胞的最新成果。《Cell Stem Cell》自创刊以来就倍受关注,影响因子迅速提升,从0一冲至16.826,又达到了23.394。其中最受关注的文章包括:
Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosuppression
科学家们发现,周期性的长时间禁食不仅对免疫系统损伤(化疗的主要副作用)有保护作用,而且a还能诱导免疫系统再生,令休眠的干细胞开始更新。这是人们首次发现,天然干涉手段能够激活干细胞,促进器官或系统的再生。
研究人员通过小鼠实验和1期临床试验发现,长时间不进食会显著降低白细胞数。进一步研究显示,小鼠周期性禁食“触动了一个再生开关”,改变了造血干细胞的信号通路。造血干细胞负责生成血液和免疫系统的细胞。
这项研究将有望帮助那些正在接受化疗或者患有免疫缺陷的人,包括自身免疫疾病的患者。目前研究团队正在研究,禁食的干细胞再生效果,是否也能在免疫系统之外起作用。
Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis
Peter Tontonoz教授带领的研究小组发现,提高小鼠的胆固醇水平会促使肠道干细胞分裂得更快,从而使肿瘤形成的速度快了100倍。
在一些小鼠中,科学家们通过在它们的饮食中引入更多的胆固醇增加肠道干细胞中的这类物质;而在另一些小鼠中,研究人员是通过改变调节磷脂(phospholipids,细胞膜中脂肪的主要类型)的一个基因——Lpcat3,从而使得细胞自己产生更多的胆固醇。研究结果显示,这两组小鼠的肠道干细胞增殖能力都增加了。
Tontonoz教授解释道:“当小鼠的胆固醇水平升高后,它们的细胞分裂得更快,这导致肠道中的组织扩张,以及肠道变长(lengthen)。这些变化显著加快了结肠中肿瘤形成的速度。”
此外,该研究中,科学家们还鉴定出了一个可作为结肠癌治疗新药物靶点的分子通路。据悉,未来,他们将进一步探索,是否这一分子通路在加速其他癌症的生长中也扮演着类似的角色。
CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency
来自Gladstone研究所,清华大学药学院的研究人员利用CRISPR技术激活了一个特殊基因,完成了小鼠皮肤细胞向干细胞的转变过程,这种创新的方法提出了一种更简单的生成有价值细胞类型的技术,并有助于了解细胞重编程过程的分子机制。
这一研究成果公布在1月Cell Stemm Cell杂志上,由丁胜博士领导完成,这位早年毕业于北京大学的干细胞专家在合成化学、干细胞生物学以及药物研发技术方面具有很强的科研实力和独特见解,创造性地开拓了“干细胞化学生物学”这一前沿性新领域。2015年他就任清华大学药学院首任院长。
对于这项最新成果,他表示:“这是一种全新的诱导多能干细胞方法,与之前的方法截然不同。在研究开始的时候,我们并不抱希望,但想至少可以解答这个问题:能否通过解锁基因组的某个特定位置来重新编程一个细胞?答案是肯定的。”
Chromatin Accessibility Dynamics During Reprogramming of iPSCs
DNA含有生物个体的所有遗传信息,但这些信息如何被阅读出来,是生命科学面临基本科学问题之一。细胞处于某一特定状态时,它会选择性阅读与该细胞相关的所有信息,同时要屏蔽其它不需要的信息。将体细胞诱导为多能干细胞(俗称的“细胞水平返老还童”)是探索这种机理的理想体系。成纤维细胞在导入诱导因子后,会启动一套奇妙的未知程序,将体细胞返老还童到受精后约3-5天的状态。过去10年来,全世界的科学家都在研究这一奇妙的过程,得到的成果极大地丰富了人类对细胞命运调控的认识。但目前对这一过程的了解主要以观察变化的现象为主,并没有从中抽象出具有普遍性逻辑或者规律。在该研究中,科研人员采用ATAC-seq技术读取染色质“开”与“关”的状态。通过测定体细胞向多能干细胞转变过程中每个染色质位点的开放程度,定义出全基因组每个位点由关到开(close to open)和开到关(open to close)的全息动态过程,这些数据证实了一个相对简单、普遍性的CO/OC逻辑体系。
研究发现,在转变过程中,早期成纤维细胞的很多特异性开放位点会被迅速关闭(OC),而到重编程后期很多多能性相关的位点则会被打开(CO)。科研团队认为开关的事件是直接与转录因子活性相关,因此对CO/OC位点的基序(motif)进行深入分析。分析发现,CO位点显著的富集出了重编程因子OCT、SOX、KLF的基序(motif),这与使用的重编程因子Oct4/Sox2/Klf4是吻合的,但CO的过程是非常缓慢的。在更加快速的OC过程中,在OC位点上特异富集出了很强的成纤维细胞特异性的转录因子,例如AP-1,ETS,TEAD,RUNX等家族成员,而没有OCT等重编程因子,证明体细胞相关染色质关闭(OC)过程是OCT、SOX、KLF非依赖的过程。进一步研究发现,与染色质关闭(OC)过程相关的因子都是体细胞重编程的重要障碍。那么,关闭这些位点的OC过程优势如何在操作呢?
通过进一步筛选,研究人员发现,表观修饰基因Sap30在体细胞重编程早期被重编程因子激活,并通过促进成纤维细胞关键基因启动子区去乙酰化修饰,而使其启动子区逐渐关闭,最终沉默成纤维细胞关键调控基因,推动重编程进程。这部分研究结果首次揭示体细胞重编程过程中染色质结构动态变化的规律—CO/OC逻辑,并为理解体细胞重编和其他相关细胞命运转变提供了新的可参考的理论模型。
Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation
过去人们都以为个体的脑细胞数量从出生开始就已经被确定了,直到USCF的Arturo Alvarez-Buylla博士等人证明鸟内以及小鼠的脑细胞中存在一定数量的干细胞,这部分细胞在个体一生的过程中会不断地产生新的神经元。
此后,研究者们一直不断地探究如何能够通过刺激干细胞增殖能力提高大脑的功能。
许多研究者们都认为,体内大部分干细胞都能够无限地产生新的细胞,但最近由来自Alvarez-Buylla实验室做出的研究结果表明事实并非如此。
通过标记活体小鼠大脑中的干细胞,从而追踪其子代的命运,研究者们发现这些细胞并不是以"自我更新"的方式复制的。事实上,大部分干细胞分裂后都会转化为神经元,进而干细胞的数量会逐渐降低。
这一发现表明神经干细胞仅仅具有部分的更新能力,这一能力能够保证小鼠一生中拥有足够数量的神经元。但这对于寿命远远长于小鼠的人类来说是否有价值就不得而知了。
为了进一步观察这些细胞分裂的情况,作者们设计了一种技术能够记录这些细胞在实验室培养条件下的分裂事件,但同时能够保证其与周围组织连接的完整性。拍摄的影片数据证实了作者们此前利用标记技术得出的结果。
Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential
一个由UBC研究人员一起创造的药物也许可以克服干细胞治疗面临的主要挑战之一——干细胞可能会太早及太快分化变成特定的组织细胞。如果这个药物可以像在实验室小鼠身上那样发挥作用的话,也许将使干细胞疗法更接近现实。
UBC和斯坦福大学的研究人员对于使用干细胞辅助肌肉组织再生治疗肌肉萎缩症很感兴趣,肌肉萎缩症是一种遗传疾病,病人肌肉会随时间而受损变弱。干细胞具有分化产生组成人体特定组织的新细胞,因此具有治愈这类疾病的潜力。理论上,干细胞可以产生新组织替代受损的组织。
本文来自生物通,转载的目的在于分享见解。如有侵权,请告知删除!——赛业生物科技有限公司
细胞生物学:
干细胞培养基:品种齐全,国际专利上百种
冻存液:无蛋白、无需程序降温
细胞因子:380余种、高纯度、高活性
实验室耗材:无痕量金属、无热原、全美进口