Logo
Homepage
Explore Our Models
My Cart
Contact
Subscribe
Models
HUGO Series 🌟
HUGO-GT™ (Rare Disease Research)
HUGO-Ab™ (Antibody Discovery)
MouseAtlas Model Library
Flash Sales
Research Models
Cre Mouse Lines
Humanized Target Gene Models
Metabolic Disease Models
Ophthalmic Disease Models
Neurological Disease Models
Autoimmune Disease Models
Immunodeficient Mouse Models
Humanized Immune System Mouse Models
Oncology & Immuno-oncology Models
Covid-19 Mouse Models
Cell Line Models
Knockout Cell Line Product Catalog
Tumor Cell Line Product Catalog
AAV Standard Product Catalog
Services
Preclinical Efficacy
Neuroscience
Alzheimer's Disease (AD)
Parkinson's Disease (PD)
Huntington's Disease (HD)
Ophthalmology
Oncology
Metabolic & Cardiovascular Diseases
Autoimmune & Inflammatory
Genetically Engineered Animals
Knockout Mice
Transgenic Mice
Knockin Mice
Knockout Rats
Knockin Rats
Transgenic Rats
Model Generation Techniques
Turboknockout® Gene Targeting
Targeted Gene Editing
Regular Transgenic
PiggyBac Transgenesis
BAC Transgenic
Breeding & Supporting Services
Breeding Services
Cryopreservation & Recovery
Phenotyping Services
BAC Modification
Virus Packaging
Adeno-associated Virus (AAV) Packaging
Lentivirus Packaging
Adenovirus Packaging
Custom Cell Line Services
Induced Pluripotent Stem Cells (iPSCs)
Knockout Cell Lines
Knockin Cell Lines
Point Mutation Cell Lines
Overexpression Cell Lines
Modalities
Gene Therapy
AI-Powered AAV Discovery
Oligonucleotide Therapy
Cell Immunotherapy
Resources
Promotion
Events & Webinars
Newsroom
Blogs & Insights
Resource Vault
Reference Databases
Peer-Reviewed Citations
Rare Disease Data Center
AbSeek
Cell iGeneEditor™ System
OriCell
About Us
Corporate Overview
Facility Overview
Animal Health & Welfare
Health Reports
Our Partners
Careers
Contact Us
Login
FILTERS
FILTERS
KO/cKO Mouse Models
Flash Sales
HUGO-GT™ Platform
Full-Gene Humanized Models
Humanized Target Gene Models
Immune Target Humanized ModelsTumor Target Humanized ModelsMetabolic Target Humanized ModelsCytokine Humanized ModelsOther Target Humanized Models
Immune System Mouse Models
Immunodeficient Mouse ModelsHumanized Immune System Models
Genetic Tool Mouse Models
Cre Driver LinesReporter Mouse LinesOther Genetic Tool Lines
Specialized Disease Models
Ophthalmic Disease ModelsNeurological Disease ModelsMetabolic Disease ModelsOncology & Immuno-oncology ModelsAutoimmune Disease ModelsRare Disease ModelsInfectious Disease ModelsOther Disease Models
42 Results Retrieved With“Ophthalmic Disease Models”
Filter
Sort By:
Alphabetical (A-Z)
Best Sellers
Abca4 KO
Product ID:
I001134
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Stargardt disease (STGD), a hereditary macular dystrophy, is characterized by the presence of yellowish flecks within the retinal pigment epithelium (RPE), ultimately culminating in macular atrophy. Typically manifesting in childhood and adolescence, STGD leads to progressive central vision loss and mild dyschromatopsia. Fundoscopic examination may reveal pale yellow lesions exhibiting a characteristic gold foil-like sheen, accompanied by yellow-white spots surrounding the posterior pole. In advanced stages, atrophy of the RPE, photoreceptors, and choriocapillaris is observed. This bilateral and typically synchronous condition affects both eyes with comparable incidence across sexes, estimated between 1/8,000 and 1/13,000. STGD is predominantly an autosomal recessive disorder, with mutations in the ABCA4 gene accounting for approximately 95% of cases. ABCA4 encodes a retina-specific ABC transporter protein crucial for the clearance of retinal derivatives and toxic metabolites generated during rhodopsin photobleaching. Consequently, ABCA4 mutations result in the accumulation of these cytotoxic substances, triggering apoptosis of both RPE and photoreceptor cells and ultimately driving retinal degeneration. Notably, ABCA4 mutations have been implicated in a spectrum of retinal diseases, including STGD, cone-rod dystrophy (CRD), age-related macular degeneration (AMD), and retinitis pigmentosa (RP), with the specific clinical phenotype correlating with the nature and severity of the ABCA4 mutation. This strain is an Abca4 gene knockout (KO) mouse model. Gene-editing technology was used to delete the protein-coding sequence of the Abca4 gene (the homolog of the human ABCA4 gene) in mice. Previous studies have demonstrated that Abca4 KO mice exhibit delayed dark adaptation following photobleaching and a slow progression of photoreceptor degeneration[1]. Homozygous Abca4 KO mice are viable and fertile.
Stargardt disease (STGD), a hereditary macular dystrophy, is characterized by the presence of yellowish flecks within the retinal pigment epithelium (RPE), ultimately culminating in macular atrophy. Typically manifesting in childhood and adolescence, STGD leads to progressive central vision loss and mild dyschromatopsia. Fundoscopic examination may reveal pale yellow lesions exhibiting a characteristic gold foil-like sheen, accompanied by yellow-white spots surrounding the posterior pole. In advanced stages, atrophy of the RPE, photoreceptors, and choriocapillaris is observed. This bilateral and typically synchronous condition affects both eyes with comparable incidence across sexes, estimated between 1/8,000 and 1/13,000. STGD is predominantly an autosomal recessive disorder, with mutations in the ABCA4 gene accounting for approximately 95% of cases. ABCA4 encodes a retina-specific ABC transporter protein crucial for the clearance of retinal derivatives and toxic metabolites generated during rhodopsin photobleaching. Consequently, ABCA4 mutations result in the accumulation of these cytotoxic substances, triggering apoptosis of both RPE and photoreceptor cells and ultimately driving retinal degeneration. Notably, ABCA4 mutations have been implicated in a spectrum of retinal diseases, including STGD, cone-rod dystrophy (CRD), age-related macular degeneration (AMD), and retinitis pigmentosa (RP), with the specific clinical phenotype correlating with the nature and severity of the ABCA4 mutation. This strain is an Abca4 gene knockout (KO) mouse model. Gene-editing technology was used to delete the protein-coding sequence of the Abca4 gene (the homolog of the human ABCA4 gene) in mice. Previous studies have demonstrated that Abca4 KO mice exhibit delayed dark adaptation following photobleaching and a slow progression of photoreceptor degeneration[1]. Homozygous Abca4 KO mice are viable and fertile.
B6-hRHO-P23H
Product ID:
C001495
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Retinitis pigmentosa (RP) is a hereditary retinal disease with a global prevalence of approximately 1:5000-1:3000. RP is highly clinically and genetically heterogeneous, with mutations in the rhodopsin (RHO) gene causing approximately 25% of dominant RP [1]. The rhodopsin encoded by the RHO gene is closely associated with visual light transduction and GPCR downstream signals. Rhodopsin is essential for the transmission of light signals in the process of vision formation. Most RHO mutations lead to high levels of rhodopsin expression in photoreceptor cells, causing many mutant proteins to be abnormally located and aggregated in cells. This results in the apoptosis of photoreceptor cells, which cannot perform normal light signal transduction functions. Additionally, mutations in the RHO gene are associated with congenital stationary night blindness (CSNB) [2-6]. Current gene therapy targeting the RHO gene to treat retinitis pigmentosa includes ASO, CRISPR, and others. Applying fully humanized animal models will promote the further development of RHO-related potential therapies in clinical trials [7-12]. This strain is a mouse Rho gene humanized model, in which the endogenous mouse Rho gene is replaced by the human RHO gene carrying a P23H mutation to express human retinal proteins in mice. Therefore, the abnormal protein encoded by the human gene was expressed in mice, resulting in abnormal retinal appearance and function and visual defects in this model. Based on the self-developed technological innovation of TurboKnockout fusion BAC recombination, Cyagen can also provide customized services for different point mutations to meet the needs of a wide range of R&D personnel regarding the pharmacodynamics of retinitis pigmentosa (RP) and other preclinical needs. Mutations in the RHO gene can lead to rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP). In 25% of autosomal dominant inherited RP (adRP) cases, there are over 150 different RHO gene mutations. Notably, the P23H mutation is one of the most prevalent, accounting for 10% of adRP cases [2]. Previous studies have shown that mice carrying the heterozygous human RHO P23H mutation exhibit retinopathy and progressive retinal degeneration similar to the patient's disease process, which could be used for visual signaling and retinitis pigmentosa (RP) studies [3]. B6-hRHO-P23H homozygous mice develop the disease earlier and have a more severe phenotype than heterozygous mice. Considering the uncertainty of growth and survival of homozygous mice due to late blindness, it is recommended to use B6-hRHO-P23H heterozygous mice for experiments. However, homozygous mice may also be selected for research according to specific experimental needs.
Retinitis pigmentosa (RP) is a hereditary retinal disease with a global prevalence of approximately 1:5000-1:3000. RP is highly clinically and genetically heterogeneous, with mutations in the rhodopsin (RHO) gene causing approximately 25% of dominant RP [1]. The rhodopsin encoded by the RHO gene is closely associated with visual light transduction and GPCR downstream signals. Rhodopsin is essential for the transmission of light signals in the process of vision formation. Most RHO mutations lead to high levels of rhodopsin expression in photoreceptor cells, causing many mutant proteins to be abnormally located and aggregated in cells. This results in the apoptosis of photoreceptor cells, which cannot perform normal light signal transduction functions. Additionally, mutations in the RHO gene are associated with congenital stationary night blindness (CSNB) [2-6]. Current gene therapy targeting the RHO gene to treat retinitis pigmentosa includes ASO, CRISPR, and others. Applying fully humanized animal models will promote the further development of RHO-related potential therapies in clinical trials [7-12]. This strain is a mouse Rho gene humanized model, in which the endogenous mouse Rho gene is replaced by the human RHO gene carrying a P23H mutation to express human retinal proteins in mice. Therefore, the abnormal protein encoded by the human gene was expressed in mice, resulting in abnormal retinal appearance and function and visual defects in this model. Based on the self-developed technological innovation of TurboKnockout fusion BAC recombination, Cyagen can also provide customized services for different point mutations to meet the needs of a wide range of R&D personnel regarding the pharmacodynamics of retinitis pigmentosa (RP) and other preclinical needs. Mutations in the RHO gene can lead to rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP). In 25% of autosomal dominant inherited RP (adRP) cases, there are over 150 different RHO gene mutations. Notably, the P23H mutation is one of the most prevalent, accounting for 10% of adRP cases [2]. Previous studies have shown that mice carrying the heterozygous human RHO P23H mutation exhibit retinopathy and progressive retinal degeneration similar to the patient's disease process, which could be used for visual signaling and retinitis pigmentosa (RP) studies [3]. B6-hRHO-P23H homozygous mice develop the disease earlier and have a more severe phenotype than heterozygous mice. Considering the uncertainty of growth and survival of homozygous mice due to late blindness, it is recommended to use B6-hRHO-P23H heterozygous mice for experiments. However, homozygous mice may also be selected for research according to specific experimental needs.
B6-hRHO*P23H/hRHO
Product ID:
C001517
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Retinitis pigmentosa (RP) is a hereditary retinal disease with a global prevalence of approximately 1:5000-1:3000. RP is highly clinically and genetically heterogeneous, with mutations in the rhodopsin (RHO) gene causing approximately 25% of dominant RP [1]. The rhodopsin encoded by the RHO gene is closely associated with visual light transduction and GPCR downstream signals. Rhodopsin is essential for the transmission of light signals in the process of vision formation. Most RHO mutations lead to high levels of rhodopsin expression in photoreceptor cells, causing many mutant proteins to be abnormally located and aggregated in cells. This results in the apoptosis of photoreceptor cells, which cannot perform normal light signal transduction functions. Additionally, mutations in the RHO gene are associated with congenital stationary night blindness (CSNB) [2-6]. Current gene therapy targeting the RHO gene to treat retinitis pigmentosa includes ASO, CRISPR, and others. Applying fully humanized animal models will promote the further development of RHO-related potential therapies in clinical trials [7-12]. This strain is a humanized model of the Rho gene with a heterozygous P23H mutation. It is obtained by mating homozygous B6J-hRHO mice (Catalog Number: C001396) with homozygous B6-hRHO-P23H mice (Catalog Number: C001495). In this model, the mouse Rho gene is replaced by the human RHO gene carrying the pathogenic mutation (P23H) and the human RHO gene without the mutation, respectively. The abnormal protein encoded by the mutant human gene is expressed in the mice. Therefore, the model exhibits abnormalities in the appearance and function of the retina, as well as visual defects. In addition, based on the technological innovation of TurboKnockout combined with BAC recombination developed independently, Cyagen Biosciences can also provide customized services for different point mutations based on B6-hRHO humanized mice to meet the experimental needs related to retinitis pigmentosa (RP) diseases. Mutations in the RHO gene are a major cause of RHO-mediated autosomal dominant retinitis pigmentosa (RHO-adRP). In 25% of autosomal dominant RP (adRP) cases, over 150 different RHO gene mutants have been identified. The P23H mutation is one of the most common causes of autosomal dominant retinitis pigmentosa, accounting for approximately 10% of adRP cases [2]. Previous studies have demonstrated that heterozygous mice carrying this mutation exhibit retinal pathology and progressive retinal degeneration similar to the disease progression in patients [3], making them valuable for studying visual signal transduction and retinitis pigmentosa (RP). Homozygous mice develop the disease earlier and have more severe phenotypes compared to heterozygous mice. Considering the uncertainty of the growth status and survival period of homozygous mice due to blindness in the later stage, it is generally recommended to use heterozygous mice (B6-hRHO*P23H/hRHO, Catalog Number: C001517) for experiments.
Retinitis pigmentosa (RP) is a hereditary retinal disease with a global prevalence of approximately 1:5000-1:3000. RP is highly clinically and genetically heterogeneous, with mutations in the rhodopsin (RHO) gene causing approximately 25% of dominant RP [1]. The rhodopsin encoded by the RHO gene is closely associated with visual light transduction and GPCR downstream signals. Rhodopsin is essential for the transmission of light signals in the process of vision formation. Most RHO mutations lead to high levels of rhodopsin expression in photoreceptor cells, causing many mutant proteins to be abnormally located and aggregated in cells. This results in the apoptosis of photoreceptor cells, which cannot perform normal light signal transduction functions. Additionally, mutations in the RHO gene are associated with congenital stationary night blindness (CSNB) [2-6]. Current gene therapy targeting the RHO gene to treat retinitis pigmentosa includes ASO, CRISPR, and others. Applying fully humanized animal models will promote the further development of RHO-related potential therapies in clinical trials [7-12]. This strain is a humanized model of the Rho gene with a heterozygous P23H mutation. It is obtained by mating homozygous B6J-hRHO mice (Catalog Number: C001396) with homozygous B6-hRHO-P23H mice (Catalog Number: C001495). In this model, the mouse Rho gene is replaced by the human RHO gene carrying the pathogenic mutation (P23H) and the human RHO gene without the mutation, respectively. The abnormal protein encoded by the mutant human gene is expressed in the mice. Therefore, the model exhibits abnormalities in the appearance and function of the retina, as well as visual defects. In addition, based on the technological innovation of TurboKnockout combined with BAC recombination developed independently, Cyagen Biosciences can also provide customized services for different point mutations based on B6-hRHO humanized mice to meet the experimental needs related to retinitis pigmentosa (RP) diseases. Mutations in the RHO gene are a major cause of RHO-mediated autosomal dominant retinitis pigmentosa (RHO-adRP). In 25% of autosomal dominant RP (adRP) cases, over 150 different RHO gene mutants have been identified. The P23H mutation is one of the most common causes of autosomal dominant retinitis pigmentosa, accounting for approximately 10% of adRP cases [2]. Previous studies have demonstrated that heterozygous mice carrying this mutation exhibit retinal pathology and progressive retinal degeneration similar to the disease progression in patients [3], making them valuable for studying visual signal transduction and retinitis pigmentosa (RP). Homozygous mice develop the disease earlier and have more severe phenotypes compared to heterozygous mice. Considering the uncertainty of the growth status and survival period of homozygous mice due to blindness in the later stage, it is generally recommended to use heterozygous mice (B6-hRHO*P23H/hRHO, Catalog Number: C001517) for experiments.
B6J-hRHO
Product ID:
C001396
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Retinitis pigmentosa (RP) is a hereditary retinal disease with a global prevalence of approximately 1:5000-1:3000. RP is highly clinically and genetically heterogeneous, with mutations in the rhodopsin (RHO) gene causing approximately 25% of dominant RP [1]. The rhodopsin encoded by the RHO gene is closely associated with visual light transduction and GPCR downstream signals. Rhodopsin is essential for the transmission of light signals in the process of vision formation. Most RHO mutations lead to high levels of rhodopsin expression in photoreceptor cells, causing many mutant proteins to be abnormally located and aggregated in cells. This results in the apoptosis of photoreceptor cells, which cannot perform normal light signal transduction functions. Additionally, mutations in the RHO gene are associated with congenital stationary night blindness (CSNB) [2-4]. Current gene therapy targeting the RHO gene to treat retinitis pigmentosa includes ASO, CRISPR, and others. Applying fully humanized animal models will promote the further development of RHO-related potential therapies in clinical trials [5-10]. This strain is a mouse Rho gene humanized model, in which the mouse Rho gene is replaced by the human RHO gene. The protein encoded by the human gene is normally expressed in the mouse. Therefore, the structure and function of the retina of this model are identical to those of wild-type mice, and there is no visual defect. This model can be used to study visual signaling and retinitis pigmentosa (RP). Based on the self-developed technological innovation of TurboKnockout fusion BAC recombination, Cyagen can also provide popular point mutation disease models constructed based on this model. The data shows that B6J-hRHO-P23H mice carrying a human RHO pathogenic mutation constructed based on B6J-hRHO mice exhibit a distinct retinal abnormal phenotype. Additionally, Cyagen can provide customized services for different point mutations to meet the needs of a wide range of R&D personnel regarding the pharmacodynamics of retinitis pigmentosa (RP) and other preclinical needs.
Retinitis pigmentosa (RP) is a hereditary retinal disease with a global prevalence of approximately 1:5000-1:3000. RP is highly clinically and genetically heterogeneous, with mutations in the rhodopsin (RHO) gene causing approximately 25% of dominant RP [1]. The rhodopsin encoded by the RHO gene is closely associated with visual light transduction and GPCR downstream signals. Rhodopsin is essential for the transmission of light signals in the process of vision formation. Most RHO mutations lead to high levels of rhodopsin expression in photoreceptor cells, causing many mutant proteins to be abnormally located and aggregated in cells. This results in the apoptosis of photoreceptor cells, which cannot perform normal light signal transduction functions. Additionally, mutations in the RHO gene are associated with congenital stationary night blindness (CSNB) [2-4]. Current gene therapy targeting the RHO gene to treat retinitis pigmentosa includes ASO, CRISPR, and others. Applying fully humanized animal models will promote the further development of RHO-related potential therapies in clinical trials [5-10]. This strain is a mouse Rho gene humanized model, in which the mouse Rho gene is replaced by the human RHO gene. The protein encoded by the human gene is normally expressed in the mouse. Therefore, the structure and function of the retina of this model are identical to those of wild-type mice, and there is no visual defect. This model can be used to study visual signaling and retinitis pigmentosa (RP). Based on the self-developed technological innovation of TurboKnockout fusion BAC recombination, Cyagen can also provide popular point mutation disease models constructed based on this model. The data shows that B6J-hRHO-P23H mice carrying a human RHO pathogenic mutation constructed based on B6J-hRHO mice exhibit a distinct retinal abnormal phenotype. Additionally, Cyagen can provide customized services for different point mutations to meet the needs of a wide range of R&D personnel regarding the pharmacodynamics of retinitis pigmentosa (RP) and other preclinical needs.
B6-huGUCY2D
Product ID:
C001798
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Gucy2e, which is the gene encoding mouse retinal guanylate cyclase 1 (RetGC1), is a key enzyme in the retina responsible for synthesizing the second messenger cyclic guanosine monophosphate (cGMP). cGMP plays an important role in the process of retinal phototransduction. Especially when restoring the dark state, it regulates the opening and closing of cGMP-gated calcium-sodium channels (CNG) and controls the influx of calcium ions (Ca2+). Mutations in Gucy2e can lead to the loss of function of retinal guanylate cyclase 1, thereby affecting the normal function of retinal photoreceptor cells [1]. Studies have shown that mutations in the Gucy2e gene are one of the main causes of Leber congenital amaurosis type 1 (LCA1). In humans, the GUCY2D gene encodes RetGC1, and its mutations lead to the occurrence of LCA1 [2]. Gene therapy offers a new treatment strategy for LCA1 patients. By delivering the GUCY2D gene or its normal copy into retinal photoreceptor cells via adeno-associated virus (AAV) vectors, it is possible to restore the function of rod and cone cells and improve visual behavior. In addition to gene therapy, researchers have explored other therapeutic approaches. For example, using double-stranded RNA interference (RNAi) technology can reduce the expression of the GUCY2D gene, thereby slowing the progression of retinal degeneration [1-2]. Apart from LCA1, the GUCY2D gene is also associated with other retinal diseases; recessive mutations in the GUCY2D gene cause cone-rod dystrophy (CORD). In a mouse model of retinitis pigmentosa (RP), knocking down the expression of the Gucy2e gene can increase the survival rate of photoreceptors and slow down the process of retinal degeneration [3]. The B6-huGUCY2D mouse is a humanized model constructed through gene-editing technology, in which the sequences from p.A55 to 3'UTR of the endogenous mouse Gucy2e gene are replaced with the sequences from p.A52 to 3'UTR of the human GUCY2D gene. The murine signal peptide is remained. This model can be used for research on diseases such as Leber congenital amaurosis type 1 (LCA1), cone-rod dystrophy (CORD), and retinitis pigmentosa (RP), as well as for screening, development, and preclinical evaluation of GUCY2D-targeted therapeutics.
Gucy2e, which is the gene encoding mouse retinal guanylate cyclase 1 (RetGC1), is a key enzyme in the retina responsible for synthesizing the second messenger cyclic guanosine monophosphate (cGMP). cGMP plays an important role in the process of retinal phototransduction. Especially when restoring the dark state, it regulates the opening and closing of cGMP-gated calcium-sodium channels (CNG) and controls the influx of calcium ions (Ca2+). Mutations in Gucy2e can lead to the loss of function of retinal guanylate cyclase 1, thereby affecting the normal function of retinal photoreceptor cells [1]. Studies have shown that mutations in the Gucy2e gene are one of the main causes of Leber congenital amaurosis type 1 (LCA1). In humans, the GUCY2D gene encodes RetGC1, and its mutations lead to the occurrence of LCA1 [2]. Gene therapy offers a new treatment strategy for LCA1 patients. By delivering the GUCY2D gene or its normal copy into retinal photoreceptor cells via adeno-associated virus (AAV) vectors, it is possible to restore the function of rod and cone cells and improve visual behavior. In addition to gene therapy, researchers have explored other therapeutic approaches. For example, using double-stranded RNA interference (RNAi) technology can reduce the expression of the GUCY2D gene, thereby slowing the progression of retinal degeneration [1-2]. Apart from LCA1, the GUCY2D gene is also associated with other retinal diseases; recessive mutations in the GUCY2D gene cause cone-rod dystrophy (CORD). In a mouse model of retinitis pigmentosa (RP), knocking down the expression of the Gucy2e gene can increase the survival rate of photoreceptors and slow down the process of retinal degeneration [3]. The B6-huGUCY2D mouse is a humanized model constructed through gene-editing technology, in which the sequences from p.A55 to 3'UTR of the endogenous mouse Gucy2e gene are replaced with the sequences from p.A52 to 3'UTR of the human GUCY2D gene. The murine signal peptide is remained. This model can be used for research on diseases such as Leber congenital amaurosis type 1 (LCA1), cone-rod dystrophy (CORD), and retinitis pigmentosa (RP), as well as for screening, development, and preclinical evaluation of GUCY2D-targeted therapeutics.
B6-huCFB/huC5
Product ID:
C001918
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
B6-huCFB/huC5 mice are a dual-gene humanized model obtained by mating B6-huCFB mice (catalog No.: C001710) with B6-huC5 mice (catalog No.: C001824). This model can be used for research on immune-related diseases such as age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and systemic lupus erythematosus (SLE), as well as for the development of CFB/C5-targeted drugs.
B6-huCFB/huC5 mice are a dual-gene humanized model obtained by mating B6-huCFB mice (catalog No.: C001710) with B6-huC5 mice (catalog No.: C001824). This model can be used for research on immune-related diseases such as age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and systemic lupus erythematosus (SLE), as well as for the development of CFB/C5-targeted drugs.
B6-hRHO (Promoter)/hRHO*P23H (Promoter)
Product ID:
C001839
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Retinitis pigmentosa (RP) is a hereditary retinal disease with a global prevalence of approximately 1:5000-1:3000. RP is highly clinically and genetically heterogeneous, with mutations in the rhodopsin (RHO) gene causing approximately 25% of dominant RP [1]. The rhodopsin encoded by the RHO gene is closely associated with visual light transduction and GPCR downstream signals. Rhodopsin is essential for the transmission of light signals in the process of vision formation. Most RHO mutations lead to high levels of rhodopsin expression in photoreceptor cells, causing many mutant proteins to be abnormally located and aggregated in cells. This results in the apoptosis of photoreceptor cells, which cannot perform normal light signal transduction functions. Additionally, mutations in the RHO gene are associated with congenital stationary night blindness (CSNB) [2-6]. Mutations in the RHO gene can lead to rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP). In 25% of autosomal dominant inherited RP (adRP) cases, there are over 150 different RHO gene mutations. Notably, the P23H mutation is one of the most prevalent, accounting for 10% of adRP cases [2]. Previous studies have shown that mice carrying the heterozygous human RHO P23H mutation exhibit retinopathy and progressive retinal degeneration similar to the patient's disease process, which could be used for visual signaling and retinitis pigmentosa (RP) studies [3]. Current gene therapy targeting the RHO gene to treat retinitis pigmentosa includes ASO, CRISPR, and others. Applying fully humanized animal models will promote the further development of RHO-related potential therapies in clinical trials [7-11]. B6-hRHO (Promoter) /hRHO*P23H (Promoter) mouse is an F1 humanized model generated by crossing homozygous B6-hRHO (Promoter) mice (Catalog No.: C001646) with homozygous B6-hRHO*P23H (Promoter) mice (Catalog No.: C001727). This model carries two human RHO gene alleles, both with humanized promoter regions. One allele is the wild-type human RHO (without mutation), while the other is the human RHO carrying a pathogenic point mutation (P23H) (hRHO*P23H). The abnormal proteins encoded by the human genes are expressed in mice, resulting in abnormal retinal morphology, functional impairments, and visual defects in this model. Additionally, leveraging the technological innovation of independently developed TurboKnockout-fused BAC recombination, Cyagen Biosciences can provide customized services for different point mutations based on B6-hRHO humanized mice to meet the experimental needs of researchers, such as pharmacodynamic studies related to retinitis pigmentosa (RP).
Retinitis pigmentosa (RP) is a hereditary retinal disease with a global prevalence of approximately 1:5000-1:3000. RP is highly clinically and genetically heterogeneous, with mutations in the rhodopsin (RHO) gene causing approximately 25% of dominant RP [1]. The rhodopsin encoded by the RHO gene is closely associated with visual light transduction and GPCR downstream signals. Rhodopsin is essential for the transmission of light signals in the process of vision formation. Most RHO mutations lead to high levels of rhodopsin expression in photoreceptor cells, causing many mutant proteins to be abnormally located and aggregated in cells. This results in the apoptosis of photoreceptor cells, which cannot perform normal light signal transduction functions. Additionally, mutations in the RHO gene are associated with congenital stationary night blindness (CSNB) [2-6]. Mutations in the RHO gene can lead to rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP). In 25% of autosomal dominant inherited RP (adRP) cases, there are over 150 different RHO gene mutations. Notably, the P23H mutation is one of the most prevalent, accounting for 10% of adRP cases [2]. Previous studies have shown that mice carrying the heterozygous human RHO P23H mutation exhibit retinopathy and progressive retinal degeneration similar to the patient's disease process, which could be used for visual signaling and retinitis pigmentosa (RP) studies [3]. Current gene therapy targeting the RHO gene to treat retinitis pigmentosa includes ASO, CRISPR, and others. Applying fully humanized animal models will promote the further development of RHO-related potential therapies in clinical trials [7-11]. B6-hRHO (Promoter) /hRHO*P23H (Promoter) mouse is an F1 humanized model generated by crossing homozygous B6-hRHO (Promoter) mice (Catalog No.: C001646) with homozygous B6-hRHO*P23H (Promoter) mice (Catalog No.: C001727). This model carries two human RHO gene alleles, both with humanized promoter regions. One allele is the wild-type human RHO (without mutation), while the other is the human RHO carrying a pathogenic point mutation (P23H) (hRHO*P23H). The abnormal proteins encoded by the human genes are expressed in mice, resulting in abnormal retinal morphology, functional impairments, and visual defects in this model. Additionally, leveraging the technological innovation of independently developed TurboKnockout-fused BAC recombination, Cyagen Biosciences can provide customized services for different point mutations based on B6-hRHO humanized mice to meet the experimental needs of researchers, such as pharmacodynamic studies related to retinitis pigmentosa (RP).
B6-huC3*R102G
Product ID:
C001896
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Complement component C3 plays a central role in activating the complement system and is the most abundant complement protein in human plasma, primarily synthesized in the liver. As part of the innate immune system, the complement system is activated during tissue damage and pathogen invasion, playing a crucial role in the inflammatory response, host homeostasis, and pathogen defense. The complement cascade is activated through the classical pathway, alternative pathway, and lectin pathway, all of which generate C3 convertase, which cleaves C3 into C3a and C3b. C3a is a potent anaphylatoxin with pro-inflammatory activity, while C3b is a regulator that induces C5 cleavage, thereby participating in the dissolution and clearance of immune complexes. Mutations in this gene are associated with atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD). Deficiencies in C3 and C3-derived peptides can lead to autoimmune diseases (such as rheumatoid arthritis, systemic lupus erythematosus, and vasculitis) and make individuals susceptible to recurrent respiratory infections and infections caused by encapsulated organisms. Conversely, excessive activation of C3 and related complement components is associated with kidney diseases (immune complex glomerulonephritis, hemolytic uremic syndrome, lupus nephritis, membranous nephropathy, and immune-mediated nephropathy) [1-2]. Specifically, the C3*R102G mutation involves a substitution of the amino acid arginine (R) with glycine (G) at position 102 of the mature C3 protein, often leading to a gain-of-function that results in the protein being more susceptible to cleavage and thus causing uncontrolled complement activation [3]. The B6-huC3*R102G mouse is a humanized disease model constructed by gene-editing technology. The sequences from upstream of exon 1 to the TGA stop codon of mouse C3 were replaced with the sequences from upstream of exon 1 to downstream of exon 41 of human C3. The p.R102G (CGC to GGC) mutation was introduced into human C3 exon 3. This model is suitable for the mechanistic study of immune-related diseases caused by uncontrolled activation of the complement system (such as age-related macular degeneration (AMD), etc.) and the development of therapies targeting C3 R102G.
Complement component C3 plays a central role in activating the complement system and is the most abundant complement protein in human plasma, primarily synthesized in the liver. As part of the innate immune system, the complement system is activated during tissue damage and pathogen invasion, playing a crucial role in the inflammatory response, host homeostasis, and pathogen defense. The complement cascade is activated through the classical pathway, alternative pathway, and lectin pathway, all of which generate C3 convertase, which cleaves C3 into C3a and C3b. C3a is a potent anaphylatoxin with pro-inflammatory activity, while C3b is a regulator that induces C5 cleavage, thereby participating in the dissolution and clearance of immune complexes. Mutations in this gene are associated with atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD). Deficiencies in C3 and C3-derived peptides can lead to autoimmune diseases (such as rheumatoid arthritis, systemic lupus erythematosus, and vasculitis) and make individuals susceptible to recurrent respiratory infections and infections caused by encapsulated organisms. Conversely, excessive activation of C3 and related complement components is associated with kidney diseases (immune complex glomerulonephritis, hemolytic uremic syndrome, lupus nephritis, membranous nephropathy, and immune-mediated nephropathy) [1-2]. Specifically, the C3*R102G mutation involves a substitution of the amino acid arginine (R) with glycine (G) at position 102 of the mature C3 protein, often leading to a gain-of-function that results in the protein being more susceptible to cleavage and thus causing uncontrolled complement activation [3]. The B6-huC3*R102G mouse is a humanized disease model constructed by gene-editing technology. The sequences from upstream of exon 1 to the TGA stop codon of mouse C3 were replaced with the sequences from upstream of exon 1 to downstream of exon 41 of human C3. The p.R102G (CGC to GGC) mutation was introduced into human C3 exon 3. This model is suitable for the mechanistic study of immune-related diseases caused by uncontrolled activation of the complement system (such as age-related macular degeneration (AMD), etc.) and the development of therapies targeting C3 R102G.
B6-huCFB/hMASP2
Product ID:
C001919
Strain:
C57BL/6Cya
Status:
Live Mouse
Description:
Complement factor B (CFB) is a circulating serine protease that plays a central role in the alternative pathway of the complement system, a critical component of innate immunity. Encoded by the CFB gene, this protein is primarily synthesized by hepatocytes, adipocytes, and monocytes, reflecting its systemic and local involvement in immune surveillance and inflammation [1]. Upon activation by factor D, CFB forms the active enzyme factor Bb, which, in complex with complement component C3b, constitutes the alternative pathway C3 convertase (C3bBb). This convertase catalyzes the cleavage of C3 into the anaphylatoxin C3a and the opsonin C3b, leading to the amplification of the complement cascade and the subsequent elimination of pathogens and damaged cells [2]. Dysregulation of CFB activity, often stemming from genetic polymorphisms within the CFB locus, has been implicated in the pathogenesis of several human diseases, including age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and systemic lupus erythematosus (SLE), underscoring the delicate balance required for proper complement regulation and immune homeostasis [3-4]. These associations highlight CFB as a key mediator of both protective and pathological immune responses. The MASP2 gene encodes MASP-2, a serum serine protease that serves as a key mediator in complement system activation. MASP-2 initiates the lectin pathway by forming complexes with pattern recognition molecules such as mannose-binding lectin (MBL) and ficolins. Upon pathogen recognition by MBL, MASP-2 is activated and subsequently cleaves complement components C4 and C2, leading to the generation of C3 convertase and triggering downstream complement activation. Beyond its role in the complement cascade, MASP-2 also contributes to the coagulation pathway by cleaving prothrombin to generate thrombin, thereby linking innate immunity and hemostasis [5]. Emerging evidence highlights the clinical significance of MASP2 gene polymorphisms, which are associated with altered susceptibility to infectious diseases and immune-related disorders. Reduced plasma levels of MASP-2 have been linked to increased vulnerability to HIV infection, while elevated MASP-2 activity may exacerbate inflammatory responses [6]. Given its pivotal role in immune regulation, MASP-2 has emerged as a promising therapeutic target. Inhibition of MASP-2 is currently under investigation as a potential strategy for treating a range of conditions, including IgA nephropathy (IgAN) [7], atypical hemolytic uremic syndrome (aHUS), and transplant-associated thrombotic microangiopathy (TA-TMA) [8]. The B6-huCFB/hMASP2 mouse is a dual-gene humanized model obtained by mating B6-huCFB mice (catalog number: C001710) with B6-hMASP2 mice (catalog number: C001592). This model can be used for research on the pathological mechanisms and treatment methods of autoimmune diseases and infectious diseases, as well as the development of CFB/MASP2-targeted drugs.
Complement factor B (CFB) is a circulating serine protease that plays a central role in the alternative pathway of the complement system, a critical component of innate immunity. Encoded by the CFB gene, this protein is primarily synthesized by hepatocytes, adipocytes, and monocytes, reflecting its systemic and local involvement in immune surveillance and inflammation [1]. Upon activation by factor D, CFB forms the active enzyme factor Bb, which, in complex with complement component C3b, constitutes the alternative pathway C3 convertase (C3bBb). This convertase catalyzes the cleavage of C3 into the anaphylatoxin C3a and the opsonin C3b, leading to the amplification of the complement cascade and the subsequent elimination of pathogens and damaged cells [2]. Dysregulation of CFB activity, often stemming from genetic polymorphisms within the CFB locus, has been implicated in the pathogenesis of several human diseases, including age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and systemic lupus erythematosus (SLE), underscoring the delicate balance required for proper complement regulation and immune homeostasis [3-4]. These associations highlight CFB as a key mediator of both protective and pathological immune responses. The MASP2 gene encodes MASP-2, a serum serine protease that serves as a key mediator in complement system activation. MASP-2 initiates the lectin pathway by forming complexes with pattern recognition molecules such as mannose-binding lectin (MBL) and ficolins. Upon pathogen recognition by MBL, MASP-2 is activated and subsequently cleaves complement components C4 and C2, leading to the generation of C3 convertase and triggering downstream complement activation. Beyond its role in the complement cascade, MASP-2 also contributes to the coagulation pathway by cleaving prothrombin to generate thrombin, thereby linking innate immunity and hemostasis [5]. Emerging evidence highlights the clinical significance of MASP2 gene polymorphisms, which are associated with altered susceptibility to infectious diseases and immune-related disorders. Reduced plasma levels of MASP-2 have been linked to increased vulnerability to HIV infection, while elevated MASP-2 activity may exacerbate inflammatory responses [6]. Given its pivotal role in immune regulation, MASP-2 has emerged as a promising therapeutic target. Inhibition of MASP-2 is currently under investigation as a potential strategy for treating a range of conditions, including IgA nephropathy (IgAN) [7], atypical hemolytic uremic syndrome (aHUS), and transplant-associated thrombotic microangiopathy (TA-TMA) [8]. The B6-huCFB/hMASP2 mouse is a dual-gene humanized model obtained by mating B6-huCFB mice (catalog number: C001710) with B6-hMASP2 mice (catalog number: C001592). This model can be used for research on the pathological mechanisms and treatment methods of autoimmune diseases and infectious diseases, as well as the development of CFB/MASP2-targeted drugs.
B6-hUSH2A (E10-15)
Product ID:
C001554
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Usher syndrome (USH), also referred to as hereditary deafness-retinitis pigmentosa syndrome or retinitis pigmentosa-neurosensory deafness syndrome, is an autosomal recessive disorder marked by genetic heterogeneity. The primary clinical manifestations include congenital sensorineural hearing loss, progressive retinitis pigmentosa (RP), and visual impairment. USH is the leading disorder resulting in deafness and blindness, with an estimated prevalence ranging from 1 in 5,000 to 1 in 16,000 individuals. USH is classified into three subtypes—USH1, USH2, and USH3—based on the age of onset and effects on hearing and vestibular function. Patients with USH1 present with profound congenital deafness and vestibular dysfunction, typically developing RP before adulthood. USH2 is characterized by moderate to severe hearing loss without vestibular dysfunction, with RP symptoms manifesting later in adulthood. USH3 patients are born with normal hearing, which progressively declines alongside the onset of RP. USH1 is the most severe form, while USH2 is the most prevalent, accounting for 40%–50% of cases. However, underdiagnosis and the gradual progression of the disease suggest that the true prevalence of USH2 may be underestimated. The USH2A gene is the primary causative gene for USH2, with 75%–90% of USH2 cases linked to mutations in this gene [1]. The USH2A gene encodes Usherin, a protein featuring laminin EGF-like, pentraxin, and fibronectin type III domains, predominantly expressed in the basement membrane of the inner ear and retina. Usherin plays a critical role in developing hair cells in the inner ear, auditory signal transduction, and the maintenance of adhesion via interactions with fibronectin in the retinal basement membrane. Mutations in the USH2A gene disrupt the normal development and function of hair cells, impair fibronectin assembly, and compromise the adhesive properties of the retinal basement membrane, leading to hearing loss and RP symptoms. Currently, there are no effective therapies for Usher syndrome. Ongoing research focuses on elucidating the genetic mechanisms underlying the disorder and developing gene-based therapeutic strategies. While gene therapy remains preclinical, promising advances have been made with antisense oligonucleotides (ASO) and CRISPR-based gene-editing technologies. QR-421a, an RNA-based oligonucleotide therapy developed by ProQR Therapeutics, targets exon 13 mutations in the USH2A gene associated with USH and non-syndromic RP. This therapeutic approach aims to restore Usherin expression by correcting exon 13 deletions through exon skipping. Given the focus of ASO and CRISPR therapies on the human USH2A gene, developing humanized mouse models is critical to advancing gene therapies toward clinical applications. Exon 13 of the USH2A gene harbors a hotspot for pathogenic mutations associated with USH, including two common mutations, c.2299delG and c.2276G>T, which are the subject of several therapeutic investigations [2-4, 6]. The B6-hUSH2A(E10-15) mouse model, in which the corresponding mouse Ush2a gene sequence was replaced with human USH2A exons 10 to 15 and their flanking regions, provides a valuable tool for studying USH pathogenesis and evaluating preclinical treatments. Homozygous B6-hUSH2A(E10-15) mice are viable and fertile, making them suitable for drug evaluation and disease modeling. In addition, based on the independently developed TurboKnockout fusion BAC recombination technology, Cyagen can also generate hot mutation models based on this strain and provide customized services for specific mutations to meet the experimental needs in pharmacology and other fields.
Usher syndrome (USH), also referred to as hereditary deafness-retinitis pigmentosa syndrome or retinitis pigmentosa-neurosensory deafness syndrome, is an autosomal recessive disorder marked by genetic heterogeneity. The primary clinical manifestations include congenital sensorineural hearing loss, progressive retinitis pigmentosa (RP), and visual impairment. USH is the leading disorder resulting in deafness and blindness, with an estimated prevalence ranging from 1 in 5,000 to 1 in 16,000 individuals. USH is classified into three subtypes—USH1, USH2, and USH3—based on the age of onset and effects on hearing and vestibular function. Patients with USH1 present with profound congenital deafness and vestibular dysfunction, typically developing RP before adulthood. USH2 is characterized by moderate to severe hearing loss without vestibular dysfunction, with RP symptoms manifesting later in adulthood. USH3 patients are born with normal hearing, which progressively declines alongside the onset of RP. USH1 is the most severe form, while USH2 is the most prevalent, accounting for 40%–50% of cases. However, underdiagnosis and the gradual progression of the disease suggest that the true prevalence of USH2 may be underestimated. The USH2A gene is the primary causative gene for USH2, with 75%–90% of USH2 cases linked to mutations in this gene [1]. The USH2A gene encodes Usherin, a protein featuring laminin EGF-like, pentraxin, and fibronectin type III domains, predominantly expressed in the basement membrane of the inner ear and retina. Usherin plays a critical role in developing hair cells in the inner ear, auditory signal transduction, and the maintenance of adhesion via interactions with fibronectin in the retinal basement membrane. Mutations in the USH2A gene disrupt the normal development and function of hair cells, impair fibronectin assembly, and compromise the adhesive properties of the retinal basement membrane, leading to hearing loss and RP symptoms. Currently, there are no effective therapies for Usher syndrome. Ongoing research focuses on elucidating the genetic mechanisms underlying the disorder and developing gene-based therapeutic strategies. While gene therapy remains preclinical, promising advances have been made with antisense oligonucleotides (ASO) and CRISPR-based gene-editing technologies. QR-421a, an RNA-based oligonucleotide therapy developed by ProQR Therapeutics, targets exon 13 mutations in the USH2A gene associated with USH and non-syndromic RP. This therapeutic approach aims to restore Usherin expression by correcting exon 13 deletions through exon skipping. Given the focus of ASO and CRISPR therapies on the human USH2A gene, developing humanized mouse models is critical to advancing gene therapies toward clinical applications. Exon 13 of the USH2A gene harbors a hotspot for pathogenic mutations associated with USH, including two common mutations, c.2299delG and c.2276G>T, which are the subject of several therapeutic investigations [2-4, 6]. The B6-hUSH2A(E10-15) mouse model, in which the corresponding mouse Ush2a gene sequence was replaced with human USH2A exons 10 to 15 and their flanking regions, provides a valuable tool for studying USH pathogenesis and evaluating preclinical treatments. Homozygous B6-hUSH2A(E10-15) mice are viable and fertile, making them suitable for drug evaluation and disease modeling. In addition, based on the independently developed TurboKnockout fusion BAC recombination technology, Cyagen can also generate hot mutation models based on this strain and provide customized services for specific mutations to meet the experimental needs in pharmacology and other fields.
Items: 1 to 10 of 42
1
2
3
4
5
More
All Filters
Strain Type
Mouse
Rat
Modification Type
Knockout
Conditional Knockout
Knockin
Point Mutation
Transgenic
Conditional Knockin
Others
Status
Live Mice
R&D
Frozen Sperm
Validation Data
Verified
In Progress
Reset
Confirm
Model Library
Model Library
Resources
Resources
Animal Quality
Animal Quality
Get Support
Get Support
Address:
2255 Martin Avenue, Suite E Santa Clara, CA 95050-2709, US
Tel:
800-921-8930 (8-6pm PST)
+1408-963-0306 (lnt’l)
Fax:
408-969-0336
Email:
inquiry@cyagen.com
Models
HUGO-Ab™ (Antibody Discovery)HUGO-GT™ (Rare Disease Research)MouseAtlas Model LibraryResearch Models
Services
NeuroscienceOphthalmologyOncologyMetabolic & Cardiovascular DiseasesAutoimmune & Inflammatory
About Us
Corporate OverviewFacility OverviewAnimal Health & WelfareHealth ReportsOur PartnersCareersContact Us
Social Media
Disclaimer: Pricing and availability of our products and services vary by region. Listed prices are applicable to the specific countries. Please contact us for more information.
Copyright © 2025 Cyagen. All rights reserved.
Privacy Policy
Site Map
Stay Updated with the Latest from Cyagen
Get the latest news on our research models, CRO services, scientific resources, and special offers—tailored to your research needs and delivered straight to your inbox.
Full Name
Email
Organization
Country
Areas of Interest
Main Area of Research