Logo
Homepage
Explore Our Models
My Cart
Contact
Subscribe
Models
HUGO Series 🌟
HUGO-GT™ (Rare Disease Research)
HUGO-Ab™ (Antibody Discovery)
MouseAtlas Model Library
Flash Sales
Research Models
Cre Mouse Lines
Humanized Target Gene Models
Metabolic Disease Models
Ophthalmic Disease Models
Neurological Disease Models
Autoimmune Disease Models
Immunodeficient Mouse Models
Humanized Immune System Mouse Models
Oncology & Immuno-oncology Models
Covid-19 Mouse Models
Cell Line Models
Knockout Cell Line Product Catalog
Tumor Cell Line Product Catalog
AAV Standard Product Catalog
Services
Preclinical Efficacy
Neuroscience
Alzheimer's Disease (AD)
Parkinson's Disease (PD)
Huntington's Disease (HD)
Ophthalmology
Oncology
Metabolic & Cardiovascular Diseases
Autoimmune & Inflammatory
Genetically Engineered Animals
Knockout Mice
Transgenic Mice
Knockin Mice
Knockout Rats
Knockin Rats
Transgenic Rats
Model Generation Techniques
Turboknockout<sup>®</sup> Gene Targeting
ES Cell Gene Targeting
Targeted Gene Editing
Regular Transgenic
PiggyBac Transgenesis
BAC Transgenic
Breeding & Supporting Services
Breeding Services
Cryopreservation & Recovery
Phenotyping Services
BAC Modification
Virus Packaging
Adeno-associated Virus (AAV) Packaging
Lentivirus Packaging
Adenovirus Packaging
Custom Cell Line Services
Induced Pluripotent Stem Cells (iPSCs)
Knockout Cell Lines
Knockin Cell Lines
Point Mutation Cell Lines
Overexpression Cell Lines
Modalities
Gene Therapy
AI-Powered AAV Discovery
Oligonucleotide Therapy
Cell Immunotherapy
Resources
Promotion
Events & Webinars
Newsroom
Blogs & Insights
Resource Vault
Reference Databases
Peer-Reviewed Citations
Rare Disease Data Center
AbSeek
Cell iGeneEditor™ System
OriCell
About Us
Corporate Overview
Facility Overview
Animal Health & Welfare
Health Reports
Our Partners
Careers
Contact Us
Login
FILTERS
FILTERS
KO/cKO Mouse Models
Flash Sales
HUGO-GT™ Platform
Full-Gene Humanized Models
Humanized Target Gene Models
Immune Target Humanized ModelsTumor Target Humanized ModelsMetabolic Target Humanized ModelsCytokine Humanized ModelsOther Target Humanized Models
Immune System Mouse Models
Immunodeficient Mouse ModelsHumanized Immune System Models
Genetic Tool Mouse Models
Cre Driver LinesReporter Mouse LinesOther Genetic Tool Lines
Specialized Disease Models
Ophthalmic Disease ModelsNeurological Disease ModelsMetabolic Disease ModelsOncology & Immuno-oncology ModelsAutoimmune Disease ModelsRare Disease ModelsInfectious Disease ModelsOther Disease Models
70 Results Retrieved With “”
Sort By:
Alphabetical (A-Z)
Best Sellers
Alpl KO
Product ID:
C001849
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
The ALPL gene encodes for the tissue-nonspecific alkaline phosphatase (TNSALP) enzyme, a membrane-bound glycoprotein. This enzyme is expressed in a variety of cellular tissues, most notably in the liver, bone, and kidney, as well as in other areas like teeth and mesenchymal stem cells [1]. Its primary function is to act as a hydrolase, removing phosphate groups from molecules. This is a critical function for skeletal and dental mineralization, where it hydrolyzes inorganic pyrophosphate (a mineralization inhibitor) into phosphate, which then combines with calcium to form bone [2]. Mutations in the ALPL gene lead to hypophosphatasia (HPP), a rare inherited metabolic disease characterized by defective bone and tooth mineralization, rickets, osteomalacia, and in severe cases, seizures and respiratory complications. The severity of HPP varies, ranging from mild forms with dental issues to life-threatening perinatal forms [3]. Variations in the ALPL gene may also be associated with other diseases, such as osteoporosis. Research has found a high frequency of homozygous common ALPL gene variants in adult patients with atypical femoral fractures or with biochemical/clinical signs of hypophosphatasia (HPP). This suggests that variations in the ALPL gene may be linked to an increased risk of these fractures [4]. Furthermore, the expression and function of the ALPL gene may be relevant to cancer immunotherapy. Studies have shown that an alkaline phosphatase isoform, known as ALPL-1, is highly expressed in osteosarcoma (OS) [5]. The Alpl KO mouse is a knockout (KO) model in which the exon 3~4 of the Alpl gene (homologous to the human ALPL gene) has been deleted via gene-editing technology. Preliminary validation data indicate that homozygous Alpl KO mice have a short lifespan, dying within four weeks when given a specialized diet. If they are not provided with this dietary support, no surviving homozygous individuals are obtained. This model can be used to study the pathogenic mechanisms of diseases such as hypophosphatasia (HPP), osteoporosis, and osteosarcoma (OS), and to provide a basis for developing related therapeutic strategies.
The ALPL gene encodes for the tissue-nonspecific alkaline phosphatase (TNSALP) enzyme, a membrane-bound glycoprotein. This enzyme is expressed in a variety of cellular tissues, most notably in the liver, bone, and kidney, as well as in other areas like teeth and mesenchymal stem cells [1]. Its primary function is to act as a hydrolase, removing phosphate groups from molecules. This is a critical function for skeletal and dental mineralization, where it hydrolyzes inorganic pyrophosphate (a mineralization inhibitor) into phosphate, which then combines with calcium to form bone [2]. Mutations in the ALPL gene lead to hypophosphatasia (HPP), a rare inherited metabolic disease characterized by defective bone and tooth mineralization, rickets, osteomalacia, and in severe cases, seizures and respiratory complications. The severity of HPP varies, ranging from mild forms with dental issues to life-threatening perinatal forms [3]. Variations in the ALPL gene may also be associated with other diseases, such as osteoporosis. Research has found a high frequency of homozygous common ALPL gene variants in adult patients with atypical femoral fractures or with biochemical/clinical signs of hypophosphatasia (HPP). This suggests that variations in the ALPL gene may be linked to an increased risk of these fractures [4]. Furthermore, the expression and function of the ALPL gene may be relevant to cancer immunotherapy. Studies have shown that an alkaline phosphatase isoform, known as ALPL-1, is highly expressed in osteosarcoma (OS) [5]. The Alpl KO mouse is a knockout (KO) model in which the exon 3~4 of the Alpl gene (homologous to the human ALPL gene) has been deleted via gene-editing technology. Preliminary validation data indicate that homozygous Alpl KO mice have a short lifespan, dying within four weeks when given a specialized diet. If they are not provided with this dietary support, no surviving homozygous individuals are obtained. This model can be used to study the pathogenic mechanisms of diseases such as hypophosphatasia (HPP), osteoporosis, and osteosarcoma (OS), and to provide a basis for developing related therapeutic strategies.
Acute PKD (inducible)
Product ID:
C001889
Strain:
C57BL/6N;6JCya
Status:
Live Mouse
Description:
Polycystin-1 (PC1), encoded by the PKD1 gene, is a large transmembrane glycoprotein that orchestrates critical cellular processes—including cell–cell and cell–matrix interactions, calcium signaling, and mechanosensation—in renal tubular epithelial cells. PC1 regulates various aspects of cellular function, including signal transduction, cytoskeletal remodeling, and cell adhesion. It forms a functional complex with Polycystin-2 (PC2), the product of the PKD2 gene, to maintain intracellular calcium homeostasis and facilitate mechanotransduction [1]. Disruption of PC1 signaling, due to PKD1 mutations—which account for approximately 85% of autosomal dominant polycystic kidney disease (ADPKD) cases—undermines these regulatory pathways, promoting abnormal cell proliferation and cyst formation [2]. Clinically, ADPKD is characterized by the progressive development of multiple fluid-filled cysts, renal enlargement, hypertension, and eventual progression to end-stage kidney disease (ESKD). With a global incidence estimated at 1 in 400 to 1 in 1000 individuals, ADPKD affects nearly 500,000 people in the United States alone and frequently involves extra-renal manifestations, including the heart, liver, pancreas, spleen, and arachnoid membrane [3]. Notably, genotypic heterogeneity exists, with PKD1 mutations often associated with an earlier onset and more aggressive disease course [2-3]. Traditional systemic Pkd1 knockout models are typically embryonically lethal, precluding long-term pathogenesis studies. In contrast, inducible, kidney-specific conditional knockout models using the Cre-LoxP system recapitulate the clinical features of human ADPKD and permit the investigation of disease progression in adult mice [4-5]. Acute PKD (inducible) mice represent an inducible conditional Pkd1 knockout model generated by crossing Pkd1-floxed mice with kidney-specific, tamoxifen-inducible Cre mice (Cdh16-MerCreMer). Offspring were induced with tamoxifen during lactation to achieve targeted deletion of Pkd1 within renal tubular epithelial cells. Preliminary observations at three weeks post-induction reveal pronounced polycystic kidney disease phenotypes, including the emergence of renal cysts, a marked increase in kidney volume, and elevated serum blood urea nitrogen (BUN) levels. We will continue to monitor this model to assess its late-stage phenotypes and overall disease progression.
Polycystin-1 (PC1), encoded by the PKD1 gene, is a large transmembrane glycoprotein that orchestrates critical cellular processes—including cell–cell and cell–matrix interactions, calcium signaling, and mechanosensation—in renal tubular epithelial cells. PC1 regulates various aspects of cellular function, including signal transduction, cytoskeletal remodeling, and cell adhesion. It forms a functional complex with Polycystin-2 (PC2), the product of the PKD2 gene, to maintain intracellular calcium homeostasis and facilitate mechanotransduction [1]. Disruption of PC1 signaling, due to PKD1 mutations—which account for approximately 85% of autosomal dominant polycystic kidney disease (ADPKD) cases—undermines these regulatory pathways, promoting abnormal cell proliferation and cyst formation [2]. Clinically, ADPKD is characterized by the progressive development of multiple fluid-filled cysts, renal enlargement, hypertension, and eventual progression to end-stage kidney disease (ESKD). With a global incidence estimated at 1 in 400 to 1 in 1000 individuals, ADPKD affects nearly 500,000 people in the United States alone and frequently involves extra-renal manifestations, including the heart, liver, pancreas, spleen, and arachnoid membrane [3]. Notably, genotypic heterogeneity exists, with PKD1 mutations often associated with an earlier onset and more aggressive disease course [2-3]. Traditional systemic Pkd1 knockout models are typically embryonically lethal, precluding long-term pathogenesis studies. In contrast, inducible, kidney-specific conditional knockout models using the Cre-LoxP system recapitulate the clinical features of human ADPKD and permit the investigation of disease progression in adult mice [4-5]. Acute PKD (inducible) mice represent an inducible conditional Pkd1 knockout model generated by crossing Pkd1-floxed mice with kidney-specific, tamoxifen-inducible Cre mice (Cdh16-MerCreMer). Offspring were induced with tamoxifen during lactation to achieve targeted deletion of Pkd1 within renal tubular epithelial cells. Preliminary observations at three weeks post-induction reveal pronounced polycystic kidney disease phenotypes, including the emergence of renal cysts, a marked increase in kidney volume, and elevated serum blood urea nitrogen (BUN) levels. We will continue to monitor this model to assess its late-stage phenotypes and overall disease progression.
Agxt KO
Product ID:
C001703
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
The AGXT gene, mapping to chromosome 2q37.3, encodes alanine-glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate-dependent homotetrameric enzyme predominantly expressed in hepatic peroxisomes [1]. AGT is central to glyoxylate metabolism, catalyzing its transamination to glycine and preventing its oxidation to oxalate [1]. Primary Hyperoxaluria Type 1 (PH1), a rare autosomal recessive disorder affecting approximately 1-3 per million individuals, arises from over 175 identified pathogenic mutations in AGXT. These mutations typically result in deficient or mislocalized AGT, leading to marked overproduction of oxalate [2]. The ensuing hyperoxaluria causes deposition of calcium oxalate in the kidneys, manifesting as nephrolithiasis and nephrocalcinosis, which can progress to end-stage renal disease [3]. In severe cases, systemic oxalosis can occur [4]. Agxt-deficient mice serve as critical preclinical models, faithfully mirroring the biochemical and pathological features of PH1 and enabling the evaluation of diverse therapeutic modalities, including enzyme replacement, substrate reduction, and gene therapy. The Agxt KO mouse is a gene knockout model created using gene-editing techniques to knock out the coding sequence of the Agxt gene (the homolog of the human AGXT gene) in mice. This model is used to research the pathogenic mechanisms of primary hyperoxaluria and develop related therapeutic strategies.
The AGXT gene, mapping to chromosome 2q37.3, encodes alanine-glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate-dependent homotetrameric enzyme predominantly expressed in hepatic peroxisomes [1]. AGT is central to glyoxylate metabolism, catalyzing its transamination to glycine and preventing its oxidation to oxalate [1]. Primary Hyperoxaluria Type 1 (PH1), a rare autosomal recessive disorder affecting approximately 1-3 per million individuals, arises from over 175 identified pathogenic mutations in AGXT. These mutations typically result in deficient or mislocalized AGT, leading to marked overproduction of oxalate [2]. The ensuing hyperoxaluria causes deposition of calcium oxalate in the kidneys, manifesting as nephrolithiasis and nephrocalcinosis, which can progress to end-stage renal disease [3]. In severe cases, systemic oxalosis can occur [4]. Agxt-deficient mice serve as critical preclinical models, faithfully mirroring the biochemical and pathological features of PH1 and enabling the evaluation of diverse therapeutic modalities, including enzyme replacement, substrate reduction, and gene therapy. The Agxt KO mouse is a gene knockout model created using gene-editing techniques to knock out the coding sequence of the Agxt gene (the homolog of the human AGXT gene) in mice. This model is used to research the pathogenic mechanisms of primary hyperoxaluria and develop related therapeutic strategies.
Atp7b KO
Product ID:
C001267
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
The ATP7B gene encodes a copper-transporting ATPase β-peptide that is a member of the P-type cation-transporting ATPase family, which uses the energy stored in adenosine triphosphate (ATP) molecules to transport metals into and out of cells. The ATP7B protein consists of multiple transmembrane structural domains, an ATPase consensus sequence, a hinge structural domain, and a phosphorylation site, as well as at least two putative copper-binding sites [1]. This protein is found mainly in the liver and to a lesser extent in the kidney and brain, and functions as a copper-transporting ATPase that plays a role in transporting copper from the liver to other parts of the body. Copper is an important component of certain enzymes that maintain normal cellular function, and the ATP7B protein is important for the removal of excess copper from the body. Mutations in this gene are associated with Wilson disease (WD), which is characterized by the accumulation of copper to toxic levels that damage tissues and organs such as the liver and brain as the removal of excess copper from the body is compromised with the absence of the functional ATP7B protein [2-4]. This strain is an Atp7b deletion mouse model, which uses gene editing technology to knock out Atp7b, the homolog of the human ATP7B gene in mice that lack the expression of ATP7B protein and can be used in the study of disorders related to copper metabolisms such as Wilson's disease, acute liver failure, and steatohepatitis. The heterozygous Atp7b KO mice are viable and fertile, and homozygous mice have a reduced life expectancy.
The ATP7B gene encodes a copper-transporting ATPase β-peptide that is a member of the P-type cation-transporting ATPase family, which uses the energy stored in adenosine triphosphate (ATP) molecules to transport metals into and out of cells. The ATP7B protein consists of multiple transmembrane structural domains, an ATPase consensus sequence, a hinge structural domain, and a phosphorylation site, as well as at least two putative copper-binding sites [1]. This protein is found mainly in the liver and to a lesser extent in the kidney and brain, and functions as a copper-transporting ATPase that plays a role in transporting copper from the liver to other parts of the body. Copper is an important component of certain enzymes that maintain normal cellular function, and the ATP7B protein is important for the removal of excess copper from the body. Mutations in this gene are associated with Wilson disease (WD), which is characterized by the accumulation of copper to toxic levels that damage tissues and organs such as the liver and brain as the removal of excess copper from the body is compromised with the absence of the functional ATP7B protein [2-4]. This strain is an Atp7b deletion mouse model, which uses gene editing technology to knock out Atp7b, the homolog of the human ATP7B gene in mice that lack the expression of ATP7B protein and can be used in the study of disorders related to copper metabolisms such as Wilson's disease, acute liver failure, and steatohepatitis. The heterozygous Atp7b KO mice are viable and fertile, and homozygous mice have a reduced life expectancy.
B6-hPCSK9
Product ID:
C001617
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a serine protease primarily produced in the liver but expressed in other tissues, including the intestine, heart, and neurons. The N-terminal domain of the PCSK9 protein is responsible for protein localization and stability, while the C-terminal domain is responsible for protein enzymatic activity [1]. The Low-density lipoprotein receptor (LDLR) is a receptor that is responsible for clearing low-density lipoprotein cholesterol (LDL-C) from the blood. PCSK9 cleaves the intracellular domain of LDLR on the cell surface, causing it to detach from the cell membrane and be transported to the lysosome for degradation, promoting LDLR degradation, and increasing plasma LDL-C. Overexpression or gain-of-function mutations of the PCSK9 gene can lead to LDL-C accumulation by reducing LDLR levels. This can cause hypercholesterolemia, which increases the risk of cardiovascular diseases, such as atherosclerosis and coronary heart disease, and neurodegenerative diseases, such as Alzheimer's disease [2]. PCSK9 has become an important target for the development of lipid-lowering drugs. Several PCSK9-targeted antibodies or small nucleic acid drugs have been approved for marketing worldwide, including evolocumab from Amgen, alirocumab from Sanofi and Regeneron, and inclisiran from Novartis. These drugs primarily work by inhibiting PCSK9 activity or preventing PCSK9 protein from binding to LDLR, lowering LDL-C levels in the blood to treat hypercholesterolemia [3-4]. In addition, PCSK9 can promote tumor growth and development by regulating cell proliferation, migration, and invasion. It can also regulate the expression of inflammatory factors that contribute to inflammation. Therefore, targeting the expression of PCSK9 has been investigated in tumor immunotherapy and autoimmune disease therapy [5-6]. B6-hPCSK9 mice are a humanized model generated by gene editing technology to replace the mouse Pcsk9 gene with the human PCSK9 gene sequence. These mice express human PCSK9 protein and can be used for research on various metabolic diseases, neurodegenerative diseases, tumor development, autoimmune disease mechanisms, and for the preclinical pharmacological evaluation of PCSK9-targeted drugs. In addition, Cyagen has developed a similar model, the B6-hPCSK9(CDS) mouse (PCSK9 coding sequence humanized model, Catalog Number: C001593). Compared to the B6-hPCSK9 mouse model, the B6-hPCSK9(CDS) mouse expresses higher levels of human PCSK9 and exhibits LDLR protein expression closer to physiological levels. It is recommended to choose the appropriate model based on the type of drug or research direction.
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a serine protease primarily produced in the liver but expressed in other tissues, including the intestine, heart, and neurons. The N-terminal domain of the PCSK9 protein is responsible for protein localization and stability, while the C-terminal domain is responsible for protein enzymatic activity [1]. The Low-density lipoprotein receptor (LDLR) is a receptor that is responsible for clearing low-density lipoprotein cholesterol (LDL-C) from the blood. PCSK9 cleaves the intracellular domain of LDLR on the cell surface, causing it to detach from the cell membrane and be transported to the lysosome for degradation, promoting LDLR degradation, and increasing plasma LDL-C. Overexpression or gain-of-function mutations of the PCSK9 gene can lead to LDL-C accumulation by reducing LDLR levels. This can cause hypercholesterolemia, which increases the risk of cardiovascular diseases, such as atherosclerosis and coronary heart disease, and neurodegenerative diseases, such as Alzheimer's disease [2]. PCSK9 has become an important target for the development of lipid-lowering drugs. Several PCSK9-targeted antibodies or small nucleic acid drugs have been approved for marketing worldwide, including evolocumab from Amgen, alirocumab from Sanofi and Regeneron, and inclisiran from Novartis. These drugs primarily work by inhibiting PCSK9 activity or preventing PCSK9 protein from binding to LDLR, lowering LDL-C levels in the blood to treat hypercholesterolemia [3-4]. In addition, PCSK9 can promote tumor growth and development by regulating cell proliferation, migration, and invasion. It can also regulate the expression of inflammatory factors that contribute to inflammation. Therefore, targeting the expression of PCSK9 has been investigated in tumor immunotherapy and autoimmune disease therapy [5-6]. B6-hPCSK9 mice are a humanized model generated by gene editing technology to replace the mouse Pcsk9 gene with the human PCSK9 gene sequence. These mice express human PCSK9 protein and can be used for research on various metabolic diseases, neurodegenerative diseases, tumor development, autoimmune disease mechanisms, and for the preclinical pharmacological evaluation of PCSK9-targeted drugs. In addition, Cyagen has developed a similar model, the B6-hPCSK9(CDS) mouse (PCSK9 coding sequence humanized model, Catalog Number: C001593). Compared to the B6-hPCSK9 mouse model, the B6-hPCSK9(CDS) mouse expresses higher levels of human PCSK9 and exhibits LDLR protein expression closer to physiological levels. It is recommended to choose the appropriate model based on the type of drug or research direction.
B6-hLPA (CKI) /Alb-cre
Product ID:
C001522
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
Lipoprotein A (LPA) is a type of particle similar to low-density lipoprotein (LDL) that is considered one of the risk factors for cardiovascular disease (CVD), such as atherosclerosis, coronary heart disease, stroke, etc [1]. LP(a) is similar in size and lipid content to LDL (low-density lipoprotein) and also contains the lipoprotein ApoB-100. However, unlike LDL, LP(a) additionally contains a variable-length lipoprotein called Apo(a), which covalently binds to ApoB-100 through a single disulfide bond. LP(a) plays an important role in systemic lipid transport, guiding inflammatory cells into blood vessel walls and leading to smooth muscle cell proliferation. Furthermore, it is involved in wound healing and tissue repair, interacting with the components of blood vessel walls and the extracellular matrix [2]. However, LP(a) can also cause arterial narrowing by adhering to the arterial wall, accelerating the formation of blood clots, and thereby triggering a series of pathological changes related to coronary heart disease, cardiovascular disease, atherosclerosis, thrombus formation, and stroke [3]. The plasma concentration of LP(a) is closely related to genetic factors and is primarily regulated by the LPA gene. Therefore, the LPA gene is an important potential target for cardiovascular disease treatment. The LPA gene encodes a serine protease that inhibits the activity of tissue-type plasminogen activator I. Fragments of this protein, generated through protein hydrolysis, can adhere to atherosclerotic lesions in arteries, promoting blood clot formation. The LPA gene is expressed in both humans and non-human primates but is not expressed in mice. Constructing mouse models expressing the human LPA gene is of significant importance for developing lipid-lowering drugs, which can drive the development of novel therapies for cardiovascular diseases. Currently, various novel therapies targeting the transcription rate of the LPA gene are under development, including small interfering RNA (siRNA) and antisense oligonucleotides (ASO) [4]. This strain was generated by mating B6-hLPA(CKI) mice (catalog number: C001521) with Alb-Cre mice (liver-specific Cre-expressing mice), resulting in a mouse model with liver-specific overexpression of the human LPA gene. B6-hLPA(CKI)/Alb-cre mice can be used to study the relationship between the LPA gene and hyperlipidemia and related cardiovascular diseases.
Lipoprotein A (LPA) is a type of particle similar to low-density lipoprotein (LDL) that is considered one of the risk factors for cardiovascular disease (CVD), such as atherosclerosis, coronary heart disease, stroke, etc [1]. LP(a) is similar in size and lipid content to LDL (low-density lipoprotein) and also contains the lipoprotein ApoB-100. However, unlike LDL, LP(a) additionally contains a variable-length lipoprotein called Apo(a), which covalently binds to ApoB-100 through a single disulfide bond. LP(a) plays an important role in systemic lipid transport, guiding inflammatory cells into blood vessel walls and leading to smooth muscle cell proliferation. Furthermore, it is involved in wound healing and tissue repair, interacting with the components of blood vessel walls and the extracellular matrix [2]. However, LP(a) can also cause arterial narrowing by adhering to the arterial wall, accelerating the formation of blood clots, and thereby triggering a series of pathological changes related to coronary heart disease, cardiovascular disease, atherosclerosis, thrombus formation, and stroke [3]. The plasma concentration of LP(a) is closely related to genetic factors and is primarily regulated by the LPA gene. Therefore, the LPA gene is an important potential target for cardiovascular disease treatment. The LPA gene encodes a serine protease that inhibits the activity of tissue-type plasminogen activator I. Fragments of this protein, generated through protein hydrolysis, can adhere to atherosclerotic lesions in arteries, promoting blood clot formation. The LPA gene is expressed in both humans and non-human primates but is not expressed in mice. Constructing mouse models expressing the human LPA gene is of significant importance for developing lipid-lowering drugs, which can drive the development of novel therapies for cardiovascular diseases. Currently, various novel therapies targeting the transcription rate of the LPA gene are under development, including small interfering RNA (siRNA) and antisense oligonucleotides (ASO) [4]. This strain was generated by mating B6-hLPA(CKI) mice (catalog number: C001521) with Alb-Cre mice (liver-specific Cre-expressing mice), resulting in a mouse model with liver-specific overexpression of the human LPA gene. B6-hLPA(CKI)/Alb-cre mice can be used to study the relationship between the LPA gene and hyperlipidemia and related cardiovascular diseases.
B6-hLPA(CKI)/Alb-cre/hPCSK9
Product ID:
I002079
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
Lipoprotein A (LPA) is a type of particle similar to low-density lipoprotein (LDL) that is considered one of the risk factors for cardiovascular disease (CVD), such as atherosclerosis, coronary heart disease, stroke, etc [1]. LP(a) is similar in size and lipid content to LDL (low-density lipoprotein) and also contains the lipoprotein ApoB-100. However, unlike LDL, LP(a) additionally contains a variable-length lipoprotein called Apo(a), which covalently binds to ApoB-100 through a single disulfide bond. LP(a) plays an important role in systemic lipid transport, guiding inflammatory cells into blood vessel walls and leading to smooth muscle cell proliferation. Furthermore, it is involved in wound healing and tissue repair, interacting with the components of blood vessel walls and the extracellular matrix [2]. However, LP(a) can also cause arterial narrowing by adhering to the arterial wall, accelerating the formation of blood clots, and thereby triggering a series of pathological changes related to coronary heart disease, cardiovascular disease, atherosclerosis, thrombus formation, and stroke [3]. The plasma concentration of LP(a) is closely related to genetic factors and is primarily regulated by the LPA gene. Therefore, the LPA gene is an important potential target for cardiovascular disease treatment. The LPA gene encodes a serine protease that inhibits the activity of tissue-type plasminogen activator I. Fragments of this protein, generated through protein hydrolysis, can adhere to atherosclerotic lesions in arteries, promoting blood clot formation. The LPA gene is expressed in both humans and non-human primates but is not expressed in mice. Constructing mouse models expressing the human LPA gene is of significant importance for developing lipid-lowering drugs, which can drive the development of novel therapies for cardiovascular diseases. Currently, various novel therapies targeting the transcription rate of the LPA gene are under development, including small interfering RNA (siRNA) and antisense oligonucleotides (ASO) [4]. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a serine protease primarily produced in the liver but expressed in other tissues, including the intestine, heart, and neurons. The N-terminal domain of the PCSK9 protein is responsible for protein localization and stability, while the C-terminal domain is responsible for protein enzymatic activity [5]. The Low-density lipoprotein receptor (LDLR) is a receptor that is responsible for clearing low-density lipoprotein cholesterol (LDL-C) from the blood. PCSK9 cleaves the intracellular domain of LDLR on the cell surface, causing it to detach from the cell membrane and be transported to the lysosome for degradation, promoting LDLR degradation, and increasing plasma LDL-C. Overexpression or gain-of-function mutations of the PCSK9 gene can lead to LDL-C accumulation by reducing LDLR levels. This can cause hypercholesterolemia, which increases the risk of cardiovascular diseases, such as atherosclerosis and coronary heart disease, and neurodegenerative diseases, such as Alzheimer's disease [6]. PCSK9 has emerged as a key target for the development of lipid-lowering drugs. Several PCSK9-targeted antibodies or small nucleic acid drugs have been approved for marketing worldwide, including evolocumab from Amgen, alirocumab from Sanofi and Regeneron, and inclisiran from Novartis. These drugs primarily work by inhibiting PCSK9 activity or preventing PCSK9 protein from binding to LDLR, lowering LDL-C levels in the blood to treat hypercholesterolemia [7-8]. In addition, PCSK9 can promote tumor growth and development by regulating cell proliferation, migration, and invasion. It can also regulate the expression of inflammatory factors that contribute to inflammation. Therefore, targeting the expression of PCSK9 has been investigated in tumor immunotherapy and autoimmune disease therapy [9-10]. The B6-hLPA (CKI)/Alb-cre/hPCSK9 mouse model is generated by crossing B6-hLPA (CKI) mice (Catalog No.: C001521, a mouse strain with conditional expression of the human LPA gene), Alb-Cre mice (liver-specific Cre-expressing mice), and B6-hPCSK9 mice (Catalog No.: C001617). This model harbors two cardiovascular disease risk factors, namely Lp (a) (lipoprotein (a)) and PCSK9, making it suitable for research on hyperlipidemia, stroke, coronary heart disease, and other atherosclerotic cardiovascular diseases (ASCVD).
Lipoprotein A (LPA) is a type of particle similar to low-density lipoprotein (LDL) that is considered one of the risk factors for cardiovascular disease (CVD), such as atherosclerosis, coronary heart disease, stroke, etc [1]. LP(a) is similar in size and lipid content to LDL (low-density lipoprotein) and also contains the lipoprotein ApoB-100. However, unlike LDL, LP(a) additionally contains a variable-length lipoprotein called Apo(a), which covalently binds to ApoB-100 through a single disulfide bond. LP(a) plays an important role in systemic lipid transport, guiding inflammatory cells into blood vessel walls and leading to smooth muscle cell proliferation. Furthermore, it is involved in wound healing and tissue repair, interacting with the components of blood vessel walls and the extracellular matrix [2]. However, LP(a) can also cause arterial narrowing by adhering to the arterial wall, accelerating the formation of blood clots, and thereby triggering a series of pathological changes related to coronary heart disease, cardiovascular disease, atherosclerosis, thrombus formation, and stroke [3]. The plasma concentration of LP(a) is closely related to genetic factors and is primarily regulated by the LPA gene. Therefore, the LPA gene is an important potential target for cardiovascular disease treatment. The LPA gene encodes a serine protease that inhibits the activity of tissue-type plasminogen activator I. Fragments of this protein, generated through protein hydrolysis, can adhere to atherosclerotic lesions in arteries, promoting blood clot formation. The LPA gene is expressed in both humans and non-human primates but is not expressed in mice. Constructing mouse models expressing the human LPA gene is of significant importance for developing lipid-lowering drugs, which can drive the development of novel therapies for cardiovascular diseases. Currently, various novel therapies targeting the transcription rate of the LPA gene are under development, including small interfering RNA (siRNA) and antisense oligonucleotides (ASO) [4]. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a serine protease primarily produced in the liver but expressed in other tissues, including the intestine, heart, and neurons. The N-terminal domain of the PCSK9 protein is responsible for protein localization and stability, while the C-terminal domain is responsible for protein enzymatic activity [5]. The Low-density lipoprotein receptor (LDLR) is a receptor that is responsible for clearing low-density lipoprotein cholesterol (LDL-C) from the blood. PCSK9 cleaves the intracellular domain of LDLR on the cell surface, causing it to detach from the cell membrane and be transported to the lysosome for degradation, promoting LDLR degradation, and increasing plasma LDL-C. Overexpression or gain-of-function mutations of the PCSK9 gene can lead to LDL-C accumulation by reducing LDLR levels. This can cause hypercholesterolemia, which increases the risk of cardiovascular diseases, such as atherosclerosis and coronary heart disease, and neurodegenerative diseases, such as Alzheimer's disease [6]. PCSK9 has emerged as a key target for the development of lipid-lowering drugs. Several PCSK9-targeted antibodies or small nucleic acid drugs have been approved for marketing worldwide, including evolocumab from Amgen, alirocumab from Sanofi and Regeneron, and inclisiran from Novartis. These drugs primarily work by inhibiting PCSK9 activity or preventing PCSK9 protein from binding to LDLR, lowering LDL-C levels in the blood to treat hypercholesterolemia [7-8]. In addition, PCSK9 can promote tumor growth and development by regulating cell proliferation, migration, and invasion. It can also regulate the expression of inflammatory factors that contribute to inflammation. Therefore, targeting the expression of PCSK9 has been investigated in tumor immunotherapy and autoimmune disease therapy [9-10]. The B6-hLPA (CKI)/Alb-cre/hPCSK9 mouse model is generated by crossing B6-hLPA (CKI) mice (Catalog No.: C001521, a mouse strain with conditional expression of the human LPA gene), Alb-Cre mice (liver-specific Cre-expressing mice), and B6-hPCSK9 mice (Catalog No.: C001617). This model harbors two cardiovascular disease risk factors, namely Lp (a) (lipoprotein (a)) and PCSK9, making it suitable for research on hyperlipidemia, stroke, coronary heart disease, and other atherosclerotic cardiovascular diseases (ASCVD).
B6-RCL-hLPA/Alb-cre/TG (APOB)
Product ID:
C001553
Strain:
C57BL/6Cya
Status:
Live Mouse
Description:
Lipoprotein(a) (LP(a)) is considered one of the risk factors for atherosclerosis, coronary heart disease, stroke, and other cardiovascular diseases (CVD) [1]. It is similar in size and lipid content to low-density lipoprotein (LDL) and contains the lipoprotein ApoB-100, but also includes a variable-length lipoprotein(a) (Apo(a)), which is covalently bound to ApoB-100 via a single disulfide bond. LP(a) plays an important role in systemic lipid transport, guiding inflammatory cells into the vascular wall and causing smooth muscle cell proliferation. In addition, it is also involved in wound healing and tissue repair, interacting with components of the vascular wall and extracellular matrix [2]. LP(a) can also cause arterial narrowing by attaching to the arterial wall, accelerating the formation of blood clots, and leading to a series of pathological changes [3]. The plasma concentration of LP(a) is closely related to genetic factors and is mainly regulated by the LPA gene. Therefore, the LPA gene is an important potential target for treating cardiovascular disease. The LPA gene is expressed in humans and non-human primates but not mice. By crossing mice conditional expression of human LPA (LSL-hLPA) with liver-specific Cre expression mice (Alb-Cre) that specifically overexpress the human LPA gene in the liver can be obtained. ApoB is a protein that plays a central role in lipid metabolism and cardiovascular disease (CVD) and is responsible for transporting cholesterol and other fat molecules to all tissues throughout the body [4]. The accumulation of cholesterol and other lipids can promote the formation of arterial plaques, leading to arterial narrowing and reduced blood flow, increasing the risk of cardiovascular events such as myocardial infarction and stroke [5]. Therefore, high levels of ApoB are a major risk factor for plaque in cardiovascular diseases such as atherosclerosis. ApoB100 is the most abundant subtype of ApoB in humans and the most important subtype of ApoB in cardiovascular disease (CVD) [6]. Mice overexpressing the human APOB gene have significantly elevated LDL cholesterol in serum. The B6-RCL-hLPA/Alb-cre/TG(APOB) mice express human LP(a) and ApoB, two risk factors for cardiovascular disease. It can be used in the study of hyperlipidemia, stroke, coronary heart disease, familial hypercholesterolemia (FH), and other atherosclerotic cardiovascular diseases (ASCVD). Internal data (not shown) indicates that, compared to the Cyagen strain B6-LPA(CKI)/Alb-Cre&Tg(APOB) mice (Catalog No. C001494), this model exhibits a more stable expression of human LPA protein at different ages. Please choose the model based on the experimental need for continuous stability of human LPA protein expression.
Lipoprotein(a) (LP(a)) is considered one of the risk factors for atherosclerosis, coronary heart disease, stroke, and other cardiovascular diseases (CVD) [1]. It is similar in size and lipid content to low-density lipoprotein (LDL) and contains the lipoprotein ApoB-100, but also includes a variable-length lipoprotein(a) (Apo(a)), which is covalently bound to ApoB-100 via a single disulfide bond. LP(a) plays an important role in systemic lipid transport, guiding inflammatory cells into the vascular wall and causing smooth muscle cell proliferation. In addition, it is also involved in wound healing and tissue repair, interacting with components of the vascular wall and extracellular matrix [2]. LP(a) can also cause arterial narrowing by attaching to the arterial wall, accelerating the formation of blood clots, and leading to a series of pathological changes [3]. The plasma concentration of LP(a) is closely related to genetic factors and is mainly regulated by the LPA gene. Therefore, the LPA gene is an important potential target for treating cardiovascular disease. The LPA gene is expressed in humans and non-human primates but not mice. By crossing mice conditional expression of human LPA (LSL-hLPA) with liver-specific Cre expression mice (Alb-Cre) that specifically overexpress the human LPA gene in the liver can be obtained. ApoB is a protein that plays a central role in lipid metabolism and cardiovascular disease (CVD) and is responsible for transporting cholesterol and other fat molecules to all tissues throughout the body [4]. The accumulation of cholesterol and other lipids can promote the formation of arterial plaques, leading to arterial narrowing and reduced blood flow, increasing the risk of cardiovascular events such as myocardial infarction and stroke [5]. Therefore, high levels of ApoB are a major risk factor for plaque in cardiovascular diseases such as atherosclerosis. ApoB100 is the most abundant subtype of ApoB in humans and the most important subtype of ApoB in cardiovascular disease (CVD) [6]. Mice overexpressing the human APOB gene have significantly elevated LDL cholesterol in serum. The B6-RCL-hLPA/Alb-cre/TG(APOB) mice express human LP(a) and ApoB, two risk factors for cardiovascular disease. It can be used in the study of hyperlipidemia, stroke, coronary heart disease, familial hypercholesterolemia (FH), and other atherosclerotic cardiovascular diseases (ASCVD). Internal data (not shown) indicates that, compared to the Cyagen strain B6-LPA(CKI)/Alb-Cre&Tg(APOB) mice (Catalog No. C001494), this model exhibits a more stable expression of human LPA protein at different ages. Please choose the model based on the experimental need for continuous stability of human LPA protein expression.
B6-huASGR1
Product ID:
C001788
Strain:
C57BL/6JCya
Status:
Live Mouse
Description:
Asialoglycoprotein receptor 1 (ASGR1), encoded by the ASGR1 gene, is central to cholesterol homeostasis and liver pathophysiology. Primarily localized to the hepatocyte plasma membrane, ASGR1 mediates ligand internalization and lysosomal degradation [1-2]. Ligand binding triggers ASGR1-dependent metabolism, involving the formation of a heteromeric complex with ASGR2, which recognizes glycoproteins with terminal galactose or N-acetylgalactosamine residues. Through modulation of the liver X receptor (LXR)/breast cancer susceptibility gene 1 (BRCA1)/BRCA1-associated ring domain protein 1 (BARD1) pathway, ASGR1 facilitates cholesterol excretion into bile, thereby influencing systemic lipid levels [1-2]. Beyond cholesterol regulation, ASGR1 participates in liver lesion processes, underscoring its broader role in liver health [3]. Notably, loss-of-function mutations in ASGR1 correlate with reduced circulating cholesterol and decreased cardiovascular disease risk. Conversely, elevated serum soluble ASGR1 (sASGR1) levels are associated with increased low-density lipoprotein cholesterol (LDL-C), particularly in hypertensive individuals [3]. Consequently, ASGR1 has emerged as a therapeutic target for cardiovascular and hepatic disorders, including hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, and cirrhosis [2-4]. The B6-huASGR1 mouse model was generated by replacing sequences from the ATG start codon to the TAG stop codon of the endogenous mouse Asgr1 gene with the sequences from the ATG start codon to the TAA stop codon of the human ASGR1 gene. This model can be used to study the pathological mechanisms and therapeutic approaches for cardiovascular and liver diseases, as well as for the development of ASGR1-targeted drugs.
Asialoglycoprotein receptor 1 (ASGR1), encoded by the ASGR1 gene, is central to cholesterol homeostasis and liver pathophysiology. Primarily localized to the hepatocyte plasma membrane, ASGR1 mediates ligand internalization and lysosomal degradation [1-2]. Ligand binding triggers ASGR1-dependent metabolism, involving the formation of a heteromeric complex with ASGR2, which recognizes glycoproteins with terminal galactose or N-acetylgalactosamine residues. Through modulation of the liver X receptor (LXR)/breast cancer susceptibility gene 1 (BRCA1)/BRCA1-associated ring domain protein 1 (BARD1) pathway, ASGR1 facilitates cholesterol excretion into bile, thereby influencing systemic lipid levels [1-2]. Beyond cholesterol regulation, ASGR1 participates in liver lesion processes, underscoring its broader role in liver health [3]. Notably, loss-of-function mutations in ASGR1 correlate with reduced circulating cholesterol and decreased cardiovascular disease risk. Conversely, elevated serum soluble ASGR1 (sASGR1) levels are associated with increased low-density lipoprotein cholesterol (LDL-C), particularly in hypertensive individuals [3]. Consequently, ASGR1 has emerged as a therapeutic target for cardiovascular and hepatic disorders, including hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, and cirrhosis [2-4]. The B6-huASGR1 mouse model was generated by replacing sequences from the ATG start codon to the TAG stop codon of the endogenous mouse Asgr1 gene with the sequences from the ATG start codon to the TAA stop codon of the human ASGR1 gene. This model can be used to study the pathological mechanisms and therapeutic approaches for cardiovascular and liver diseases, as well as for the development of ASGR1-targeted drugs.
B6-hKLB
Product ID:
C001622
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
The KLB gene encodes β-Klotho, a transmembrane protein that functions as an obligate co-receptor for fibroblast growth factor (FGF) receptors, specifically for the endocrine FGF ligands FGF19 and FGF21 [1]. Expressed across metabolic tissues, including adipose, liver, and pancreas, KLB is a critical regulator of FGF19 and FGF21 signaling, impacting glucose homeostasis, energy balance, and bile acid metabolism [1-3]. β-Klotho facilitates FGF19 and FGF21 signaling through direct interaction with FGF receptors [1]. KLB gene expression is observed across various tissues, encompassing metabolic, haematopoietic, foetal, and adult tissues [1]. Perturbations in KLB function and genetic variants have been implicated in a range of disorders, including hypogonadotropic hypogonadism, male infertility, obesity, non-alcoholic fatty liver disease, irritable bowel syndrome, and potentially certain malignancies [1-4]. Thus, KLB emerges as a pivotal gene in FGF signaling, exerting pleiotropic effects on metabolic physiology and disease [1-4]. The B6-hKLB mouse is a humanized model generated using gene editing technology by integrating the Chimeric cDNA and the 3'UTR of the mouse Klb gene into the mouse Klb gene locus. The mouse Klb endogenous extracellular domain was replaced with the human KLB domain, and the murine transmembrane-cytoplasmic region was remained. Homozygous B6-hKLB mice are viable and fertile. This model can be used for research on the pathological mechanisms and treatment methods of metabolic diseases such as obesity, diabetes, metabolic-associated steatohepatitis (MASH), inflammatory diseases, and potentially selected malignancies and the development of KLB-targeted drugs.
The KLB gene encodes β-Klotho, a transmembrane protein that functions as an obligate co-receptor for fibroblast growth factor (FGF) receptors, specifically for the endocrine FGF ligands FGF19 and FGF21 [1]. Expressed across metabolic tissues, including adipose, liver, and pancreas, KLB is a critical regulator of FGF19 and FGF21 signaling, impacting glucose homeostasis, energy balance, and bile acid metabolism [1-3]. β-Klotho facilitates FGF19 and FGF21 signaling through direct interaction with FGF receptors [1]. KLB gene expression is observed across various tissues, encompassing metabolic, haematopoietic, foetal, and adult tissues [1]. Perturbations in KLB function and genetic variants have been implicated in a range of disorders, including hypogonadotropic hypogonadism, male infertility, obesity, non-alcoholic fatty liver disease, irritable bowel syndrome, and potentially certain malignancies [1-4]. Thus, KLB emerges as a pivotal gene in FGF signaling, exerting pleiotropic effects on metabolic physiology and disease [1-4]. The B6-hKLB mouse is a humanized model generated using gene editing technology by integrating the Chimeric cDNA and the 3'UTR of the mouse Klb gene into the mouse Klb gene locus. The mouse Klb endogenous extracellular domain was replaced with the human KLB domain, and the murine transmembrane-cytoplasmic region was remained. Homozygous B6-hKLB mice are viable and fertile. This model can be used for research on the pathological mechanisms and treatment methods of metabolic diseases such as obesity, diabetes, metabolic-associated steatohepatitis (MASH), inflammatory diseases, and potentially selected malignancies and the development of KLB-targeted drugs.
Items: 1 to 10 of 70
1
2
3
4
5
6
7
More
Model Library
Model Library
Resources
Resources
Animal Quality
Animal Quality
Get Support
Get Support
Address:
2255 Martin Avenue, Suite E Santa Clara, CA 95050-2709, US
Tel:
800-921-8930 (8-6pm PST)
+1408-963-0306 (lnt’l)
Fax:
408-969-0336
Email:
inquiry@cyagen.com
Models
HUGO-Ab™ (Antibody Discovery)HUGO-GT™ (Rare Disease Research)MouseAtlas Model LibraryResearch Models
Services
NeuroscienceOphthalmologyOncologyMetabolic & Cardiovascular DiseasesAutoimmune & Inflammatory
About Us
Corporate OverviewFacility OverviewAnimal Health & WelfareHealth ReportsOur PartnersCareersContact Us
Social Media
Disclaimer: Pricing and availability of our products and services vary by region. Listed prices are applicable to the specific countries. Please contact us for more information.
Copyright © 2025 Cyagen. All rights reserved.
Privacy Policy
Site Map
Stay Updated with the Latest from Cyagen
Get the latest news on our research models, CRO services, scientific resources, and special offers—tailored to your research needs and delivered straight to your inbox.
Full Name
Email
Organization
Country
Areas of Interest
Main Area of Research