Logo
Homepage
Explore Our Models
My Cart
Contact
Subscribe
Models
HUGO Series 🌟
HUGO-GT™ (Rare Disease Research)
HUGO-Ab™ (Antibody Discovery)
MouseAtlas Model Library
Flash Sales
Research Models
Cre Mouse Lines
Humanized Target Gene Models
Metabolic Disease Models
Ophthalmic Disease Models
Neurological Disease Models
Autoimmune Disease Models
Immunodeficient Mouse Models
Humanized Immune System Mouse Models
Oncology & Immuno-oncology Models
Covid-19 Mouse Models
Cell Line Models
Knockout Cell Line Product Catalog
Tumor Cell Line Product Catalog
AAV Standard Product Catalog
Services
Preclinical Efficacy
Neuroscience
Alzheimer's Disease (AD)
Parkinson's Disease (PD)
Huntington's Disease (HD)
Ophthalmology
Oncology
Metabolic & Cardiovascular Diseases
Autoimmune & Inflammatory
Genetically Engineered Animals
Knockout Mice
Transgenic Mice
Knockin Mice
Knockout Rats
Knockin Rats
Transgenic Rats
Model Generation Techniques
Turboknockout® Gene Targeting
Targeted Gene Editing
Regular Transgenic
PiggyBac Transgenesis
BAC Transgenic
Breeding & Supporting Services
Breeding Services
Cryopreservation & Recovery
Phenotyping Services
BAC Modification
Virus Packaging
Adeno-associated Virus (AAV) Packaging
Lentivirus Packaging
Adenovirus Packaging
Custom Cell Line Services
Induced Pluripotent Stem Cells (iPSCs)
Knockout Cell Lines
Knockin Cell Lines
Point Mutation Cell Lines
Overexpression Cell Lines
Modalities
Gene Therapy
AI-Powered AAV Discovery
Oligonucleotide Therapy
Cell Immunotherapy
Resources
Promotion
Events & Webinars
Newsroom
Blogs & Insights
Resource Vault
Reference Databases
Peer-Reviewed Citations
Rare Disease Data Center
AbSeek
Cell iGeneEditor™ System
OriCell
About Us
Corporate Overview
Facility Overview
Animal Health & Welfare
Health Reports
Our Partners
Careers
Contact Us
Login
FILTERS
FILTERS
KO/cKO Mouse Models
Flash Sales
HUGO-GT™ Platform
Full-Gene Humanized Models
Humanized Target Gene Models
Immune Target Humanized ModelsTumor Target Humanized ModelsMetabolic Target Humanized ModelsCytokine Humanized ModelsOther Target Humanized Models
Immune System Mouse Models
Immunodeficient Mouse ModelsHumanized Immune System Models
Genetic Tool Mouse Models
Cre Driver LinesReporter Mouse LinesOther Genetic Tool Lines
Specialized Disease Models
Ophthalmic Disease ModelsNeurological Disease ModelsMetabolic Disease ModelsOncology & Immuno-oncology ModelsAutoimmune Disease ModelsRare Disease ModelsInfectious Disease ModelsOther Disease Models
68 Results Retrieved With“Cytokine Humanized Models”
Filter
Sort By:
Alphabetical (A-Z)
Best Sellers
B6-hINHBE
Product ID:
C001533
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
Inhibin βE subunit (INHBE) is a member of the transforming growth factor-β (TGF-β) superfamily, highly specifically expressed in liver cells. The precursor protein of INHBE generates the inhibin β subunit after proteolytic processing. This protein is associated with various cellular processes, including cell proliferation, apoptosis, immune response, and hormone secretion. During the development of obesity and diabetes, the expression of INHBE protein inhibits the proliferation and growth of relevant cells in the pancreas and liver. Research has found a positive correlation between INHBE expression in the liver and insulin resistance and body mass index (BMI), suggesting that INHBE may be a liver factor in altering systemic metabolic status under conditions of obesity-related insulin resistance [1]. The studies conducted by Alnylam Pharmaceuticals and the Regeneron Genetics Center (RGC), respectively, revealed the close relationship between INHBE and fat regulation. The research demonstrated that rare loss-of-function variants in INHBE may protect the liver from the impact of inflammation, abnormal blood lipids, and type 2 diabetes by promoting healthy fat storage. Patients carrying such mutations exhibit more normal fat distribution, significantly reduced abdominal fat, improved metabolic conditions, and a decreased risk of cardiovascular diseases and type 2 diabetes [2-4]. These findings suggest that INHBE is a liver-specific negative regulator of fat storage. Inhibiting the expression of INHBE genes and proteins may be a potential strategy for treating metabolic disorders related to improper fat distribution and storage. Consequently, several small nucleic acid pharmaceutical companies, including Alnylam Pharmaceuticals, Arrowhead Pharmaceuticals, and Wave Life Sciences, are currently developing RNA interference (RNAi) drugs targeting INHBE to treat conditions such as obesity [5-7]. RNAi drugs primarily include small interfering RNA (siRNA) and antisense oligonucleotides (ASO). siRNA targets and degrades specific mRNA, while ASO binds to the target mRNA, preventing its translation or inducing its degradation, thereby inhibiting the expression of the target gene. Considering the genetic differences between humans and animals, humanizing mouse genes can accelerate the clinical development of RNAi therapies targeting human INHBE. This strain is a mouse Inhbe gene humanized model and can be used to study therapies targeting INHBE for obesity. The homozygous B6-huINHBE mice are viable and fertile. In addition, based on the independently developed TurboKnockout fusion BAC recombination technology, Cyagen can also generate hot mutation models based on this strain and provide customized services for specific mutations to meet the experimental needs in pharmacology and other fields.
Inhibin βE subunit (INHBE) is a member of the transforming growth factor-β (TGF-β) superfamily, highly specifically expressed in liver cells. The precursor protein of INHBE generates the inhibin β subunit after proteolytic processing. This protein is associated with various cellular processes, including cell proliferation, apoptosis, immune response, and hormone secretion. During the development of obesity and diabetes, the expression of INHBE protein inhibits the proliferation and growth of relevant cells in the pancreas and liver. Research has found a positive correlation between INHBE expression in the liver and insulin resistance and body mass index (BMI), suggesting that INHBE may be a liver factor in altering systemic metabolic status under conditions of obesity-related insulin resistance [1]. The studies conducted by Alnylam Pharmaceuticals and the Regeneron Genetics Center (RGC), respectively, revealed the close relationship between INHBE and fat regulation. The research demonstrated that rare loss-of-function variants in INHBE may protect the liver from the impact of inflammation, abnormal blood lipids, and type 2 diabetes by promoting healthy fat storage. Patients carrying such mutations exhibit more normal fat distribution, significantly reduced abdominal fat, improved metabolic conditions, and a decreased risk of cardiovascular diseases and type 2 diabetes [2-4]. These findings suggest that INHBE is a liver-specific negative regulator of fat storage. Inhibiting the expression of INHBE genes and proteins may be a potential strategy for treating metabolic disorders related to improper fat distribution and storage. Consequently, several small nucleic acid pharmaceutical companies, including Alnylam Pharmaceuticals, Arrowhead Pharmaceuticals, and Wave Life Sciences, are currently developing RNA interference (RNAi) drugs targeting INHBE to treat conditions such as obesity [5-7]. RNAi drugs primarily include small interfering RNA (siRNA) and antisense oligonucleotides (ASO). siRNA targets and degrades specific mRNA, while ASO binds to the target mRNA, preventing its translation or inducing its degradation, thereby inhibiting the expression of the target gene. Considering the genetic differences between humans and animals, humanizing mouse genes can accelerate the clinical development of RNAi therapies targeting human INHBE. This strain is a mouse Inhbe gene humanized model and can be used to study therapies targeting INHBE for obesity. The homozygous B6-huINHBE mice are viable and fertile. In addition, based on the independently developed TurboKnockout fusion BAC recombination technology, Cyagen can also generate hot mutation models based on this strain and provide customized services for specific mutations to meet the experimental needs in pharmacology and other fields.
B6-huIL17A/huIL17F
Product ID:
C001932
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
Interleukin 17A (IL-17A) is a signature cytokine of the T helper 17 (Th17) subset of CD4+ T cells and one of the six members (IL-17A~IL-17F) of the IL-17 family. IL-17A is primarily produced by Th17 cells and can also be produced by other immune cells under certain conditions, including CD8+ T cells, γδT cells, natural killer T (NKT) cells, monocytes, neutrophils, and microglia [1]. IL-17A mediates downstream pathways that induce the production of inflammatory molecules, chemokines, antimicrobial peptides, and remodeling proteins, which have important effects on host defense, cell transport, immune regulation, and tissue repair, especially in inducing innate immune defense. In healthy skin, commensal microorganisms induce the production of IL-17A to provide antifungal protection. When the skin barrier is damaged, IL-17A promotes epithelial cell proliferation and can clear pathogenic factors, promoting tissue repair and wound healing [2]. IL-17A usually protects the body when it is acutely injured, but when a wound requires long-term healing and becomes a chronic injury, the role of IL-17A may transform into wound erosion or excessive proliferation, ultimately leading to loss of function [3]. IL-17A plays a key role in various infectious diseases, inflammations, autoimmune diseases, and cancers. Its high expression level is associated with chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and multiple sclerosis. Lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely the result of the promotion of inflammatory reactions by cytokines such as IL-17A. Dysregulation of IL-17 signaling promotes pathogenic inflammation. IL-17A has a pathogenic role in mediating the important inflammatory pathway of psoriasis. The IL-23/Th17/IL-17A pathway is a key link in its pathogenesis, and inhibiting the expression of IL-17A can effectively alleviate psoriasis [4]. IL-17A is also associated with the course of ankylosing spondylitis (AS), and IL-17A inhibitors can effectively treat AS [5]. In addition, studies have shown that IL-17A is involved in the pathogenesis of neurodegenerative diseases in the central nervous system, and its expression level is related to the severity and progression of the disease [3]. The IL17F gene, located on chromosome 6p12.2, is primarily expressed by activated T cells, particularly Th17 cells, as well as other immune cells like γδ T cells and some innate immune cells [6]. The gene encodes the interleukin-17F (IL-17F) cytokine, a disulfide-linked homodimer protein that shares significant sequence homology with IL-17A [7]. Functionally, IL-17F is a pro-inflammatory cytokine that binds to the IL-17RA/RC receptor complex, triggering downstream signaling pathways involving Act1 and TRAF6, leading to the induction of various cytokines (like IL-6, IL-8, GM-CSF) and chemokines, which contribute to neutrophil recruitment and inflammation in barrier tissues such as the skin, lungs, and gut [8]. Elevated levels or dysregulation of IL-17F have been implicated in the pathogenesis of several autoimmune and inflammatory diseases, including psoriasis, rheumatoid arthritis, inflammatory bowel disease (like Crohn's disease and ulcerative colitis), and potentially Sjögren's syndrome, highlighting its role in chronic inflammatory processes [7-9]. The B6-huIL17A/huIL17F mouse is a dual-gene humanized model constructed by gene-editing technology. Based on the B6-hIL-17A mouse (catalog number: C001510), the sequences from the ATG start codon to the TGA stop codon of the endogenous mouse Il17f gene were replaced with the sequences from the ATG start codon to the TAA stop codon of the human IL17F gene. This model can be used for research on the pathogenesis of various chronic inflammatory diseases, such as rheumatoid arthritis (RA), psoriasis, multiple sclerosis, and inflammatory bowel diseases (IBD) and the related therapeutic drugs, as well as for the development of IL17A/IL17F-targeted drugs.
Interleukin 17A (IL-17A) is a signature cytokine of the T helper 17 (Th17) subset of CD4+ T cells and one of the six members (IL-17A~IL-17F) of the IL-17 family. IL-17A is primarily produced by Th17 cells and can also be produced by other immune cells under certain conditions, including CD8+ T cells, γδT cells, natural killer T (NKT) cells, monocytes, neutrophils, and microglia [1]. IL-17A mediates downstream pathways that induce the production of inflammatory molecules, chemokines, antimicrobial peptides, and remodeling proteins, which have important effects on host defense, cell transport, immune regulation, and tissue repair, especially in inducing innate immune defense. In healthy skin, commensal microorganisms induce the production of IL-17A to provide antifungal protection. When the skin barrier is damaged, IL-17A promotes epithelial cell proliferation and can clear pathogenic factors, promoting tissue repair and wound healing [2]. IL-17A usually protects the body when it is acutely injured, but when a wound requires long-term healing and becomes a chronic injury, the role of IL-17A may transform into wound erosion or excessive proliferation, ultimately leading to loss of function [3]. IL-17A plays a key role in various infectious diseases, inflammations, autoimmune diseases, and cancers. Its high expression level is associated with chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and multiple sclerosis. Lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely the result of the promotion of inflammatory reactions by cytokines such as IL-17A. Dysregulation of IL-17 signaling promotes pathogenic inflammation. IL-17A has a pathogenic role in mediating the important inflammatory pathway of psoriasis. The IL-23/Th17/IL-17A pathway is a key link in its pathogenesis, and inhibiting the expression of IL-17A can effectively alleviate psoriasis [4]. IL-17A is also associated with the course of ankylosing spondylitis (AS), and IL-17A inhibitors can effectively treat AS [5]. In addition, studies have shown that IL-17A is involved in the pathogenesis of neurodegenerative diseases in the central nervous system, and its expression level is related to the severity and progression of the disease [3]. The IL17F gene, located on chromosome 6p12.2, is primarily expressed by activated T cells, particularly Th17 cells, as well as other immune cells like γδ T cells and some innate immune cells [6]. The gene encodes the interleukin-17F (IL-17F) cytokine, a disulfide-linked homodimer protein that shares significant sequence homology with IL-17A [7]. Functionally, IL-17F is a pro-inflammatory cytokine that binds to the IL-17RA/RC receptor complex, triggering downstream signaling pathways involving Act1 and TRAF6, leading to the induction of various cytokines (like IL-6, IL-8, GM-CSF) and chemokines, which contribute to neutrophil recruitment and inflammation in barrier tissues such as the skin, lungs, and gut [8]. Elevated levels or dysregulation of IL-17F have been implicated in the pathogenesis of several autoimmune and inflammatory diseases, including psoriasis, rheumatoid arthritis, inflammatory bowel disease (like Crohn's disease and ulcerative colitis), and potentially Sjögren's syndrome, highlighting its role in chronic inflammatory processes [7-9]. The B6-huIL17A/huIL17F mouse is a dual-gene humanized model constructed by gene-editing technology. Based on the B6-hIL-17A mouse (catalog number: C001510), the sequences from the ATG start codon to the TGA stop codon of the endogenous mouse Il17f gene were replaced with the sequences from the ATG start codon to the TAA stop codon of the human IL17F gene. This model can be used for research on the pathogenesis of various chronic inflammatory diseases, such as rheumatoid arthritis (RA), psoriasis, multiple sclerosis, and inflammatory bowel diseases (IBD) and the related therapeutic drugs, as well as for the development of IL17A/IL17F-targeted drugs.
B6-hIL-17A
Product ID:
C001510
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
Interleukin 17A (IL-17A) is a signature cytokine of the T helper 17 (Th17) subset of CD4+ T cells and one of the six members (IL-17A~IL-17F) of the IL-17 family. IL-17A is primarily produced by Th17 cells and can also be produced by other immune cells under certain conditions, including CD8+ T cells, γδT cells, natural killer T (NKT) cells, monocytes, neutrophils, and microglia [1]. IL-17A mediates downstream pathways that induce the production of inflammatory molecules, chemokines, antimicrobial peptides, and remodeling proteins, which have important effects on host defense, cell transport, immune regulation, and tissue repair, especially in inducing innate immune defense. In healthy skin, commensal microorganisms induce the production of IL-17A to provide antifungal protection. When the skin barrier is damaged, IL-17A promotes epithelial cell proliferation and can clear pathogenic factors, promoting tissue repair and wound healing [2]. IL-17A usually protects the body when it is acutely injured, but when a wound requires long-term healing and becomes a chronic injury, the role of IL-17A may transform into wound erosion or excessive proliferation, ultimately leading to loss of function [3]. IL-17A plays a key role in various infectious diseases, inflammations, autoimmune diseases, and cancers. Its high expression level is associated with chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and multiple sclerosis. Lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely the result of the promotion of inflammatory reactions by cytokines such as IL-17A. Dysregulation of IL-17 signaling promotes pathogenic inflammation. IL-17A has a pathogenic role in mediating the important inflammatory pathway of psoriasis. The IL-23/Th17/IL-17A pathway is a key link in its pathogenesis, and inhibiting the expression of IL-17A can effectively alleviate psoriasis [4]. IL-17A is also associated with the course of ankylosing spondylitis (AS), and IL-17A inhibitors can effectively treat AS [5]. In addition, studies have shown that IL-17A is involved in the pathogenesis of neurodegenerative diseases in the central nervous system, and its expression level is related to the severity and progression of the disease [3]. B6-hIL-17A mice are humanized mouse models that express human IL-17A protein. They were constructed by using gene editing technology to replace the sequence encoding the endogenous extracellular domain of the mouse Il17a gene with the corresponding sequence from the human IL17A gene while retaining the mouse signal peptide. This strain can be used for mechanism research and preclinical evaluation of therapeutic drugs for various chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and multiple sclerosis. The homozygotes are viable and fertile.
Interleukin 17A (IL-17A) is a signature cytokine of the T helper 17 (Th17) subset of CD4+ T cells and one of the six members (IL-17A~IL-17F) of the IL-17 family. IL-17A is primarily produced by Th17 cells and can also be produced by other immune cells under certain conditions, including CD8+ T cells, γδT cells, natural killer T (NKT) cells, monocytes, neutrophils, and microglia [1]. IL-17A mediates downstream pathways that induce the production of inflammatory molecules, chemokines, antimicrobial peptides, and remodeling proteins, which have important effects on host defense, cell transport, immune regulation, and tissue repair, especially in inducing innate immune defense. In healthy skin, commensal microorganisms induce the production of IL-17A to provide antifungal protection. When the skin barrier is damaged, IL-17A promotes epithelial cell proliferation and can clear pathogenic factors, promoting tissue repair and wound healing [2]. IL-17A usually protects the body when it is acutely injured, but when a wound requires long-term healing and becomes a chronic injury, the role of IL-17A may transform into wound erosion or excessive proliferation, ultimately leading to loss of function [3]. IL-17A plays a key role in various infectious diseases, inflammations, autoimmune diseases, and cancers. Its high expression level is associated with chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and multiple sclerosis. Lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely the result of the promotion of inflammatory reactions by cytokines such as IL-17A. Dysregulation of IL-17 signaling promotes pathogenic inflammation. IL-17A has a pathogenic role in mediating the important inflammatory pathway of psoriasis. The IL-23/Th17/IL-17A pathway is a key link in its pathogenesis, and inhibiting the expression of IL-17A can effectively alleviate psoriasis [4]. IL-17A is also associated with the course of ankylosing spondylitis (AS), and IL-17A inhibitors can effectively treat AS [5]. In addition, studies have shown that IL-17A is involved in the pathogenesis of neurodegenerative diseases in the central nervous system, and its expression level is related to the severity and progression of the disease [3]. B6-hIL-17A mice are humanized mouse models that express human IL-17A protein. They were constructed by using gene editing technology to replace the sequence encoding the endogenous extracellular domain of the mouse Il17a gene with the corresponding sequence from the human IL17A gene while retaining the mouse signal peptide. This strain can be used for mechanism research and preclinical evaluation of therapeutic drugs for various chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and multiple sclerosis. The homozygotes are viable and fertile.
B6-huIL15
Product ID:
C001853
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
The IL15 gene encodes a pleiotropic four-α-helix bundle cytokine known as Interleukin-15 (IL-15), which is essential for the development, survival, and activation of immune cells, particularly Natural Killer (NK) cells and memory CD8+ T cells. Unlike many cytokines, IL-15 is primarily regulated at the post-transcriptional and translational levels rather than just transcriptionally, and it is uniquely delivered to target cells through trans-presentation, where it is shuttled to the cell surface bound to its high-affinity receptor, IL-15Rα [1]. The protein is widely expressed across a variety of tissues, including the placenta, skeletal muscle, kidney, lung, and heart, and is produced by both hematopoietic cells (such as monocytes, macrophages, and dendritic cells) and non-hematopoietic cells (such as epithelial cells and fibroblasts) [2]. Functionally, IL-15 triggers the JAK/STAT (specifically JAK1/3 and STAT3/5) and PI3K/AKT/mTOR signaling pathways to promote cellular proliferation and inhibit apoptosis by upregulating anti-apoptotic factors like BCL2 [3]. Because of its potent inflammatory effects, dysregulation of the IL15 gene is implicated in several pathologies: over-expression is strongly associated with autoimmune diseases like Celiac disease, Rheumatoid Arthritis, and Multiple Sclerosis, as well as certain malignancies like Adult T-cell Leukemia, while its deficiency can lead to severe immunodeficiency or impaired response to viral infections [4]. The B6-huIL15 mouse is a humanized model constructed through gene-editing technology, in which the region from partial intron 4 to TGA stop codon of mouse Il15 is replaced with the region from partial intron 4 to TGA stop codon of human IL15. This model can be used for research on autoimmune diseases like Celiac disease, Rheumatoid Arthritis, and Multiple Sclerosis, as well as certain malignancies like Adult T-cell Leukemia. Furthermore, it serves as a platform for the screening, development, and preclinical evaluation of IL15-targeted therapeutics.
The IL15 gene encodes a pleiotropic four-α-helix bundle cytokine known as Interleukin-15 (IL-15), which is essential for the development, survival, and activation of immune cells, particularly Natural Killer (NK) cells and memory CD8+ T cells. Unlike many cytokines, IL-15 is primarily regulated at the post-transcriptional and translational levels rather than just transcriptionally, and it is uniquely delivered to target cells through trans-presentation, where it is shuttled to the cell surface bound to its high-affinity receptor, IL-15Rα [1]. The protein is widely expressed across a variety of tissues, including the placenta, skeletal muscle, kidney, lung, and heart, and is produced by both hematopoietic cells (such as monocytes, macrophages, and dendritic cells) and non-hematopoietic cells (such as epithelial cells and fibroblasts) [2]. Functionally, IL-15 triggers the JAK/STAT (specifically JAK1/3 and STAT3/5) and PI3K/AKT/mTOR signaling pathways to promote cellular proliferation and inhibit apoptosis by upregulating anti-apoptotic factors like BCL2 [3]. Because of its potent inflammatory effects, dysregulation of the IL15 gene is implicated in several pathologies: over-expression is strongly associated with autoimmune diseases like Celiac disease, Rheumatoid Arthritis, and Multiple Sclerosis, as well as certain malignancies like Adult T-cell Leukemia, while its deficiency can lead to severe immunodeficiency or impaired response to viral infections [4]. The B6-huIL15 mouse is a humanized model constructed through gene-editing technology, in which the region from partial intron 4 to TGA stop codon of mouse Il15 is replaced with the region from partial intron 4 to TGA stop codon of human IL15. This model can be used for research on autoimmune diseases like Celiac disease, Rheumatoid Arthritis, and Multiple Sclerosis, as well as certain malignancies like Adult T-cell Leukemia. Furthermore, it serves as a platform for the screening, development, and preclinical evaluation of IL15-targeted therapeutics.
B6-huIL12B
Product ID:
C001619
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
The IL12B gene encodes the p40 subunit, a component of both interleukin-12 (IL-12) and IL-23, which are formed through heterodimerization with IL-12p35 and IL-23p19, respectively [1]. Primarily secreted by activated monocytes, macrophages, dendritic cells, and B lymphocytes, these cytokines modulate Th1 and Th17 cell differentiation via the JAK-STAT signaling pathway, playing critical roles in immunity against intracellular pathogens and in inflammatory responses. IL-12 also enhances cellular immunity through the induction of interferon-gamma [1-2]. IL12B gene expression is regulated by NF-κB and IRF transcription factors, and aberrant activation is implicated in autoimmune pathogenesis. Notably, single nucleotide polymorphisms (SNPs) within IL12B and an overactive IL-12/IL-23 pathway are strongly associated with susceptibility to autoimmune diseases [1-3]. Monoclonal antibodies targeting IL-12B, such as ustekinumab, are clinically utilized for the treatment of moderate to severe psoriasis and Crohn's disease [4-5]. Within the tumor microenvironment, IL-12B exhibits a complex functional profile, potentially enhancing cytotoxic T and NK cell activity, promoting IFN-γ production, and driving anti-tumor immunity. However, it can also contribute to tumor progression by fostering angiogenesis, depending on the tumor type and microenvironmental context [6]. This duality underscores IL-12B as a key target for precise immunotherapy, particularly in combination therapies that simultaneously block IL-12 and IL-23 signaling, offering therapeutic potential across a spectrum of immune-related diseases and cancers [1-6]. B6-huIL12B mice are humanized models generated by gene editing technology, in which the entire base sequence of the mouse Il12b gene was replaced in situ with the corresponding sequence from the human IL12B gene. Homozygous B6-huIL12B mice are viable and fertile. This model can be used to study the pathological mechanisms and therapeutic methods of immune-related diseases and cancer, as well as the screening and development of IL12B-targeted drugs, and preclinical efficacy and safety evaluations.
The IL12B gene encodes the p40 subunit, a component of both interleukin-12 (IL-12) and IL-23, which are formed through heterodimerization with IL-12p35 and IL-23p19, respectively [1]. Primarily secreted by activated monocytes, macrophages, dendritic cells, and B lymphocytes, these cytokines modulate Th1 and Th17 cell differentiation via the JAK-STAT signaling pathway, playing critical roles in immunity against intracellular pathogens and in inflammatory responses. IL-12 also enhances cellular immunity through the induction of interferon-gamma [1-2]. IL12B gene expression is regulated by NF-κB and IRF transcription factors, and aberrant activation is implicated in autoimmune pathogenesis. Notably, single nucleotide polymorphisms (SNPs) within IL12B and an overactive IL-12/IL-23 pathway are strongly associated with susceptibility to autoimmune diseases [1-3]. Monoclonal antibodies targeting IL-12B, such as ustekinumab, are clinically utilized for the treatment of moderate to severe psoriasis and Crohn's disease [4-5]. Within the tumor microenvironment, IL-12B exhibits a complex functional profile, potentially enhancing cytotoxic T and NK cell activity, promoting IFN-γ production, and driving anti-tumor immunity. However, it can also contribute to tumor progression by fostering angiogenesis, depending on the tumor type and microenvironmental context [6]. This duality underscores IL-12B as a key target for precise immunotherapy, particularly in combination therapies that simultaneously block IL-12 and IL-23 signaling, offering therapeutic potential across a spectrum of immune-related diseases and cancers [1-6]. B6-huIL12B mice are humanized models generated by gene editing technology, in which the entire base sequence of the mouse Il12b gene was replaced in situ with the corresponding sequence from the human IL12B gene. Homozygous B6-huIL12B mice are viable and fertile. This model can be used to study the pathological mechanisms and therapeutic methods of immune-related diseases and cancer, as well as the screening and development of IL12B-targeted drugs, and preclinical efficacy and safety evaluations.
B6-huIL4/huIL13/huTSLP
Product ID:
C001812
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
The B6-huIL4/huIL13/huTSLP mouse is a triple-gene humanized model obtained by mating B6-huIL4 mice (catalog number: C001628), B6-huIL13 mice (catalog number: C001634), and B6-huTSLP mice (catalog number: C001809). This model can be used for the mechanism research and development of treatment methods in allergic diseases, inflammation and autoimmune diseases, Th2 immune response, parasitic infections, tumor immunology, as well as the development of IL-4/IL13/TSLP-targeted drugs, and the pre-clinical evaluation of drug efficacy and safety.
The B6-huIL4/huIL13/huTSLP mouse is a triple-gene humanized model obtained by mating B6-huIL4 mice (catalog number: C001628), B6-huIL13 mice (catalog number: C001634), and B6-huTSLP mice (catalog number: C001809). This model can be used for the mechanism research and development of treatment methods in allergic diseases, inflammation and autoimmune diseases, Th2 immune response, parasitic infections, tumor immunology, as well as the development of IL-4/IL13/TSLP-targeted drugs, and the pre-clinical evaluation of drug efficacy and safety.
B6-hAGT/hREN/huPCSK9
Product ID:
C001922
Strain:
C57BL/6Cya
Status:
Live Mouse
Description:
The B6-hAGT/hREN/huPCSK9 mouse is a humanized model obtained by mating the hREN x hAGT mouse (catalog No.: C001336) with the B6-huPCSK9 mouse (catalog No.: C001617). This model can be used for mechanism research on chronic hypertension, various metabolic diseases, neurodegenerative diseases, and tumorigenesis, as well as the development of relevant treatment methods.
The B6-hAGT/hREN/huPCSK9 mouse is a humanized model obtained by mating the hREN x hAGT mouse (catalog No.: C001336) with the B6-huPCSK9 mouse (catalog No.: C001617). This model can be used for mechanism research on chronic hypertension, various metabolic diseases, neurodegenerative diseases, and tumorigenesis, as well as the development of relevant treatment methods.
B6-hPCSK9
Product ID:
C001617
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a serine protease primarily produced in the liver but expressed in other tissues, including the intestine, heart, and neurons. The N-terminal domain of the PCSK9 protein is responsible for protein localization and stability, while the C-terminal domain is responsible for protein enzymatic activity [1]. The Low-density lipoprotein receptor (LDLR) is a receptor that is responsible for clearing low-density lipoprotein cholesterol (LDL-C) from the blood. PCSK9 cleaves the intracellular domain of LDLR on the cell surface, causing it to detach from the cell membrane and be transported to the lysosome for degradation, promoting LDLR degradation, and increasing plasma LDL-C. Overexpression or gain-of-function mutations of the PCSK9 gene can lead to LDL-C accumulation by reducing LDLR levels. This can cause hypercholesterolemia, which increases the risk of cardiovascular diseases, such as atherosclerosis and coronary heart disease, and neurodegenerative diseases, such as Alzheimer's disease [2]. PCSK9 has become an important target for the development of lipid-lowering drugs. Several PCSK9-targeted antibodies or small nucleic acid drugs have been approved for marketing worldwide, including evolocumab from Amgen, alirocumab from Sanofi and Regeneron, and inclisiran from Novartis. These drugs primarily work by inhibiting PCSK9 activity or preventing PCSK9 protein from binding to LDLR, lowering LDL-C levels in the blood to treat hypercholesterolemia [3-4]. In addition, PCSK9 can promote tumor growth and development by regulating cell proliferation, migration, and invasion. It can also regulate the expression of inflammatory factors that contribute to inflammation. Therefore, targeting the expression of PCSK9 has been investigated in tumor immunotherapy and autoimmune disease therapy [5-6]. B6-hPCSK9 mice are a humanized model generated by gene editing technology to replace the mouse Pcsk9 gene with the human PCSK9 gene sequence. These mice express human PCSK9 protein and can be used for research on various metabolic diseases, neurodegenerative diseases, tumor development, autoimmune disease mechanisms, and for the preclinical pharmacological evaluation of PCSK9-targeted drugs. In addition, Cyagen has developed a similar model, the B6-hPCSK9(CDS) mouse (PCSK9 coding sequence humanized model, Catalog Number: C001593). Compared to the B6-hPCSK9 mouse model, the B6-hPCSK9(CDS) mouse expresses higher levels of human PCSK9 and exhibits LDLR protein expression closer to physiological levels. It is recommended to choose the appropriate model based on the type of drug or research direction.
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a serine protease primarily produced in the liver but expressed in other tissues, including the intestine, heart, and neurons. The N-terminal domain of the PCSK9 protein is responsible for protein localization and stability, while the C-terminal domain is responsible for protein enzymatic activity [1]. The Low-density lipoprotein receptor (LDLR) is a receptor that is responsible for clearing low-density lipoprotein cholesterol (LDL-C) from the blood. PCSK9 cleaves the intracellular domain of LDLR on the cell surface, causing it to detach from the cell membrane and be transported to the lysosome for degradation, promoting LDLR degradation, and increasing plasma LDL-C. Overexpression or gain-of-function mutations of the PCSK9 gene can lead to LDL-C accumulation by reducing LDLR levels. This can cause hypercholesterolemia, which increases the risk of cardiovascular diseases, such as atherosclerosis and coronary heart disease, and neurodegenerative diseases, such as Alzheimer's disease [2]. PCSK9 has become an important target for the development of lipid-lowering drugs. Several PCSK9-targeted antibodies or small nucleic acid drugs have been approved for marketing worldwide, including evolocumab from Amgen, alirocumab from Sanofi and Regeneron, and inclisiran from Novartis. These drugs primarily work by inhibiting PCSK9 activity or preventing PCSK9 protein from binding to LDLR, lowering LDL-C levels in the blood to treat hypercholesterolemia [3-4]. In addition, PCSK9 can promote tumor growth and development by regulating cell proliferation, migration, and invasion. It can also regulate the expression of inflammatory factors that contribute to inflammation. Therefore, targeting the expression of PCSK9 has been investigated in tumor immunotherapy and autoimmune disease therapy [5-6]. B6-hPCSK9 mice are a humanized model generated by gene editing technology to replace the mouse Pcsk9 gene with the human PCSK9 gene sequence. These mice express human PCSK9 protein and can be used for research on various metabolic diseases, neurodegenerative diseases, tumor development, autoimmune disease mechanisms, and for the preclinical pharmacological evaluation of PCSK9-targeted drugs. In addition, Cyagen has developed a similar model, the B6-hPCSK9(CDS) mouse (PCSK9 coding sequence humanized model, Catalog Number: C001593). Compared to the B6-hPCSK9 mouse model, the B6-hPCSK9(CDS) mouse expresses higher levels of human PCSK9 and exhibits LDLR protein expression closer to physiological levels. It is recommended to choose the appropriate model based on the type of drug or research direction.
B6-huOX40/huOX40L
Product ID:
C001936
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
The B6-huOX40/huOX40L mouse is a dual-gene humanized model obtained by mating B6-huOX40L (huTNFSF4) mice (catalog No.: C001719) with B6-huOX40 (huTNFRSF4) mice (catalog No.: C001805). This model can be used for the research of autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), as well as tumor immunity. It is also applicable to the screening and development of TNFSF4/TNFRSF4-targeted drugs, and the pre-clinical evaluation of their efficacy and safety.
The B6-huOX40/huOX40L mouse is a dual-gene humanized model obtained by mating B6-huOX40L (huTNFSF4) mice (catalog No.: C001719) with B6-huOX40 (huTNFRSF4) mice (catalog No.: C001805). This model can be used for the research of autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), as well as tumor immunity. It is also applicable to the screening and development of TNFSF4/TNFRSF4-targeted drugs, and the pre-clinical evaluation of their efficacy and safety.
B6-huOSM/hOSMR
Product ID:
C001901
Strain:
C57BL/6NCya
Status:
Live Mouse
Description:
The B6-huOSM/hOSMR mouse is a dual-gene humanized model obtained by crossing B6-huOSM mice (catalog No.: C001815) with B6-hOSMR mice (catalog No.: C001841). This model can be used for studying the pathogenesis of inflammatory diseases (such as rheumatoid arthritis, osteoarthritis, and inflammatory bowel disease), cancers (cervical squamous cell carcinoma, lung adenocarcinoma, and pancreatic cancer), pulmonary and skin diseases (such as asthma and psoriasis), cardiovascular diseases (such as atherosclerosis), liver diseases (such as fibrosis), and hematopoietic system and bone marrow-related diseases, as well as for the development of OSM/OSMR-targeted drugs.
The B6-huOSM/hOSMR mouse is a dual-gene humanized model obtained by crossing B6-huOSM mice (catalog No.: C001815) with B6-hOSMR mice (catalog No.: C001841). This model can be used for studying the pathogenesis of inflammatory diseases (such as rheumatoid arthritis, osteoarthritis, and inflammatory bowel disease), cancers (cervical squamous cell carcinoma, lung adenocarcinoma, and pancreatic cancer), pulmonary and skin diseases (such as asthma and psoriasis), cardiovascular diseases (such as atherosclerosis), liver diseases (such as fibrosis), and hematopoietic system and bone marrow-related diseases, as well as for the development of OSM/OSMR-targeted drugs.
Items: 1 to 10 of 68
1
2
3
4
5
6
7
More
All Filters
Strain Type
Mouse
Rat
Modification Type
Knockout
Conditional Knockout
Knockin
Point Mutation
Transgenic
Conditional Knockin
Others
Status
Live Mice
R&D
Frozen Sperm
Validation Data
Verified
In Progress
Reset
Confirm
Model Library
Model Library
Resources
Resources
Animal Quality
Animal Quality
Get Support
Get Support
Address:
2255 Martin Avenue, Suite E Santa Clara, CA 95050-2709, US
Tel:
800-921-8930 (8-6pm PST)
+1408-963-0306 (lnt’l)
Fax:
408-969-0336
Email:
inquiry@cyagen.com
Models
HUGO-Ab™ (Antibody Discovery)HUGO-GT™ (Rare Disease Research)MouseAtlas Model LibraryResearch Models
Services
NeuroscienceOphthalmologyOncologyMetabolic & Cardiovascular DiseasesAutoimmune & Inflammatory
About Us
Corporate OverviewFacility OverviewAnimal Health & WelfareHealth ReportsOur PartnersCareersContact Us
Social Media
Disclaimer: Pricing and availability of our products and services vary by region. Listed prices are applicable to the specific countries. Please contact us for more information.
Copyright © 2025 Cyagen. All rights reserved.
Privacy Policy
Site Map
Stay Updated with the Latest from Cyagen
Get the latest news on our research models, CRO services, scientific resources, and special offers—tailored to your research needs and delivered straight to your inbox.
Full Name
Email
Organization
Country
Areas of Interest
Main Area of Research